Tensorflow lesson 6---层 layer

本文介绍了一个典型的深度学习模型设计过程,包括输入层、隐藏层和输出层的基本概念,并通过一个具体的示例展示了如何使用TensorFlow实现一个两层的神经网络模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设计一个深度学习的模型,其实就设计一个多层的学习模型,而每个层上又有不同的神经元,所有的运算逻辑都是在这些神经元上完成的,每一层的输出作为下一层的输入。
下图是一个典型的,一共有5层的学习模型,包含1个输入层,3个隐藏层,1个输出层,而在每个隐藏层中有包括2个神经元。
这里写图片描述

输入层:输入一定是所谓的图Tensor结构,可以是输入tensor的各种可能feature运算,比如说是平方,相乘,sin,cos等等,具体是什么要根据实际情况来定

隐藏层:这是执行学习运算逻辑的主要阵地,所谓的深度学习,也就是隐藏层可以是非常深的层次,层次越多所要消耗的资源也越多,但并不见得层次越多效果会越好。每一个隐藏层可以设计自己的学习逻辑,使得神经元对不同的特性感兴趣,这部分也是我们需要主要学习的地方

输出层:是模型的最后一个层次,直接把学习的结果输出为可以被理解的格式,比如说图片识别,这一层可以告诉你图片中物体可能是什么物体的概率。

这里写图片描述
上面这张图是一个有4个隐藏层,每个层有不同数量的神经元,而输入层有四个不同feature数据输入。
读者可以到谷歌推出的神经网络游乐场去完,有助于理解层的概念
http://playground.tensorflow.org

示例代码:

import tensorflow as tf
import numpy as np

def add_layer(inputs,in_size,out_size,activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size])+0.1)
    Wx_plus_b=tf.matmul(inputs,Weights)
    if(activation_function==None):
        outputs=Wx_plus_b
    else:
        outputs=activation_function(Wx_plus_b)

    return outputs

x_data= np.linspace(-1,1,300)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise

xs=tf.placeholder(tf.float32,[300,1],"xs")
ys=tf.placeholder(tf.float32,[300,1],"ys")


l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction= add_layer(l1,10,1,activation_function=None)


loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))

train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init=tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)

for i in range(1000):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if i%20 ==0:
        print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

执行结果如下:

0.634071
0.133638
0.121423
0.119904
0.119701
0.119674
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
0.11967
### 新概念英语第一册 Lesson 50-64 的教学内容概述 #### 教学目标 新概念英语第一册(New Concept English Book 1)作为入门级教材,主要面向初学者,旨在帮助学习者掌握基础语法结构、常用词汇以及日常对话能力。Lesson 50 至 Lesson 64 进一步巩固并扩展了之前所学的基础知识点,同时引入了一些新的句型和表达方式。 以下是具体章节的教学重点: --- #### **Lesson 50: A day off** 本课通过描述一天的假期安排,教授如何用一般将来时表达计划和意图。核心句型包括 “be going to” 和简单的未来时间状语[^1]。 ```python # 示例句子 I am going to visit my friend tomorrow. We are not going to work on Sunday. ``` #### **Lesson 51: The right word** 该课程强调选择合适的词语来完成句子的重要性,并复习了名词单复数形式的变化规则[^2]。 #### **Lesson 52: Too late** 讲述了一个人错过火车的故事,涉及过去式的不规则动词变化及其应用情境[^3]。 #### **Lesson 53: My uncle Arthur** 介绍了一位叔叔的独特性格特征,运用形容词比较级与最高级进行人物描写[^4]。 #### **Lesson 54: An exciting trip** 记录了一场令人兴奋的旅行经历,练习使用现在分词短语作伴随状况状语[^5]。 #### **Lesson 55: No wrong numbers** 围绕电话号码错误展开情节,进一步强化数字读法及询问确认信息的语言技巧[^6]。 #### **Lesson 56: Better stay at home** 讨论天气预报不准带来的麻烦,引入条件句 Type I (If + Present Simple, will...) 来预测可能的结果[^7]。 #### **Lesson 57: A good idea** 展示了一个创意解决办法的过程,鼓励学生灵活运用因果关系连接词 like because, so 等构建逻辑清晰的话语链[^8]。 #### **Lesson 58: Always young** 回忆一位始终保持年轻心态的朋友形象,探讨年龄增长但精神状态依旧积极向上的主题[^9]。 #### **Lesson 59: Bad luck!** 讲述了一系列倒霉事件的发生经过,反复操练情态动词 could/couldn't 表达可能性或不可能性的功能[^10]。 #### **Lesson 60: Not for jazz...** 对比不同音乐爱好者之间的偏好差异,引导学员学会合理表达个人喜好倾向[^11]。 #### **Lesson 61: Trouble with the Hubble** 聚焦哈勃望远镜早期遇到的技术难题,科普科技领域专用术语的同时训练复杂被动语态的应用场景[^12]。 #### **Lesson 62: Shopping made easy** 描绘现代购物体验便捷化趋势背后的原因分析,熟悉电子商务相关词汇组合[^13]。 #### **Lesson 63: Out of control?** 反思人类社会发展中某些方面失控的现象,尝试从多角度阐述观点立场[^14]。 #### **Lesson 64: Quick action saved village** 报道快速行动拯救村庄的真实案例,突出紧急情况下采取果断措施的重要意义[^15]。 --- ### 总结 以上各单元均紧密联系实际生活话题,在传授语言知识的过程中注重培养学生的跨文化交际意识和社会责任感。每篇课文配有相应的听力材料、单词表以及配套练习题,便于全方位提升听说读写综合技能水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DiegoRobot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值