自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(44)
  • 收藏
  • 关注

原创 使用UV管理PyTorch项目

PyTorch安装与加速器配置指南 PyTorch安装需要特殊处理,因其wheel托管在专属索引上,且针对不同加速器(CPU/CUDA/ROCM)有不同构建版本。可通过uv工具管理项目配置。

2025-07-20 10:21:27 436

原创 使用UV管理FastAPI项目

本文介绍了使用uv工具管理和部署FastAPI项目的完整流程。首先演示了如何将现有FastAPI项目迁移到uv环境,通过uv初始化项目框架并添加FastAPI依赖。其次展示了使用uv run命令运行FastAPI开发服务器的方法。最后提供了基于Docker的部署方案,包括Dockerfile编写、镜像构建和容器运行步骤,使用uv同步依赖并最终通过FastAPI运行应用。整个过程涵盖了从开发到部署的全生命周期管理。

2025-07-19 21:54:39 119

原创 使用uvx运行和安装Python应用程序

摘要:uvx工具提供了便捷的Python包管理功能,支持直接运行未安装的工具(如uvx ruff),处理包名与命令不一致的情况(使用--from选项),指定版本(如[email protected])和额外功能(如mypy[faster-cache])。它还支持从Git等替代源安装,管理插件依赖(--with选项),以及工具的安装(uv tool install)、升级(uv tool upgrade)和Python版本指定(--python 3.10)。安装后的工具可直接运行,但模块不会自动导入虚拟环境。

2025-07-19 10:32:29 558

原创 使用UV管理Python项目

摘要:UV是一个Python项目管理工具,通过pyproject.toml管理项目依赖。它提供uv init创建项目结构,包含虚拟环境(.venv)和锁定文件(uv.lock)。使用uv add/remove管理依赖,uv run确保环境一致性后执行脚本,uv build构建发行版。UV自动同步依赖和虚拟环境,保证项目可重现性,适合团队协作开发。主要功能包括依赖管理、版本控制、环境同步和自动化构建。

2025-07-18 09:00:22 420

原创 使用UV管理Python软件包和环境

UV是一款基于Rust开发的超快Python包和项目管理工具,可替代pip、poetry等传统工具。主要特点包括:速度比pip快10-100倍,统一管理Python版本和虚拟环境,支持复杂项目的锁定文件管理,提供pip兼容的CLI接口。支持多种安装方式(独立安装、pipx、Homebrew等),可管理Python版本安装和升级。典型用法包括:创建/激活虚拟环境,通过多种方式安装/卸载包,锁定依赖并同步环境。UV还提供包列表查看、依赖检查等功能,大幅提升Python开发效率。

2025-07-17 14:13:58 869

原创 使用SSH隧道连接远程主机

简要介绍了SSH协议及其作用,针对三个场景,分别介绍了动态转发,本地转发,远程转发的应用条件和配置示例。

2025-07-05 21:46:16 774

原创 为Ultralytics 项目设置 Conda 环境

Conda是一个强大的开源软件包和环境管理系统,特别适合数据科学和机器学习工作。摘要介绍了如何安装Anaconda、使用conda命令管理虚拟环境(创建/激活/删除环境),以及设置Conda环境来安装Ultralytics库(包括CUDA环境下的安装说明)。还提供了使用YOLO模型进行对象检测的代码示例,并介绍了Ultralytics提供的Docker镜像使用方法(支持GPU加速)。这些内容涵盖了从环境配置到实际应用的完整工作流程。

2025-07-04 16:14:30 691

原创 在内网部署Bind9 DNS服务器

本文介绍了在Ubuntu系统上安装和配置BIND9 DNS服务器的过程。BIND9是最常用的开源DNS软件,支持主/从服务器、缓存服务器等类型。文章详细说明了正向解析配置步骤,包括编辑主配置文件、创建区域文件、检查语法和重载配置。同时介绍了反向解析的应用场景和配置方法,适用于邮件验证、日志分析等需求。配置完成后可通过dig或nslookup命令测试解析效果。文中还提供了DNS转发功能的设置方法,可将非本地查询转发至公共DNS服务器。整个安装和配置过程简明实用,适合在内网环境中快速搭建DNS服务。

2025-07-03 19:22:43 1203

原创 Ultralytics YOLO超参数调整指南(二)

本文介绍了使用Ultralytics YOLO进行超参数调整的方法。主要内容包括:1)如何定义搜索空间并使用model.tune()方法进行超参数调整;2)如何恢复中断的调整会话;3)调整完成后生成的结果文件结构及其用途说明,包括最佳超参数文件、性能图表和权重文件等。文中提供了完整的代码示例和文件结构说明,帮助用户通过遗传算法优化YOLO模型的性能。该调整过程简单高效,适合系统性地提升模型表现。

2025-06-29 13:34:53 1033

原创 Ultralytics YOLO超参数调整指南(一)

摘要:本文介绍了Ultralytics YOLO的超参数调整方法,重点讲解了遗传算法优化过程。内容包括超参数类型(如学习率、批量大小等)、调整步骤(初始化、变异、训练、评估)以及默认搜索空间参数(数值范围及功能说明)。文章强调超参数调整需要确定评估指标、设置计算资源预算,并通过迭代优化模型性能。默认参数表格详细列出了20个关键参数及其取值范围,为YOLO模型优化提供了实用参考。

2025-06-28 21:28:32 1086

原创 使用Ultralytics YOLO进行数据增强

数据增强是计算机视觉领域的一项重要技术,它通过对现有图像进行各种转换,人为地扩展训练数据集。在训练深度学习模型时,数据增强有助于提高模型的鲁棒性,减少过拟合,并增强对真实世界场景的泛化。Ultralytics YOLO 提供了一整套增强技术,每种技术都有特定的用途,并以不同的方式提高模型性能。本文主要描述在检测推理时常用的数据增强功能。

2025-06-27 19:46:11 976

原创 在树莓派上使用YOLO11推理

摘要:Raspberry Pi因其低成本、紧凑性和多功能性,成为计算机视觉项目的理想平台。本文介绍了在Raspberry Pi上安装Ultralytics YOLO模型的两种方法(Docker和非Docker),推荐使用YOLO11n/s等轻量模型。重点讲解了如何将模型转换为NCNN格式提升推理性能,以及通过Picamera2或TCP流实现摄像头实时推理的方案。最佳实践包括使用SSD替代SD卡、选择无图形界面系统、合理超频等优化措施,充分发挥Raspberry Pi在边缘计算中的潜力。(150字)

2025-06-26 21:19:37 1246

原创 使用YOLO模型进行线程安全推理

在多线程环境中使用YOLO模型时,线程安全至关重要。文章指出共享单例模型实例会导致竞赛条件,建议在每个线程内独立实例化YOLO模型以确保线程安全。同时介绍了Ultralytics提供的ThreadingLocked装饰器,通过加锁机制实现共享模型实例的线程安全调用。此外,还建议考虑使用多进程并行处理或任务队列来进一步优化性能。关键结论是:避免跨线程共享模型实例,采用线程隔离或加锁机制,必要时可转向多进程方案,以确保多线程环境下YOLO模型推理的可靠性和稳定性。

2025-06-18 19:59:28 1027

原创 使用VSCode开发FastAPI指南(二)

本文介绍了在FastAPI开发中使用Redis作为持久化数据存储的具体实现方法。首先指导用户通过VSCode Dev Containers配置包含Redis的开发环境,详细说明了Windows系统下Docker容器的创建步骤和配置文件编辑。然后讲解了如何将原有的内存字典存储替换为Redis数据库,包括Redis客户端的初始化、数据结构的迁移(使用Redis哈希存储商品信息),以及如何通过hget和hincrby方法实现商品名称与ID的映射、商品数量更新等操作。教程还提供了类型提示处理、错误检查等开发细节。

2025-06-15 20:16:40 1603

原创 使用VSCode开发FastAPI指南(一)

FastAPI是一个高性能Python Web框架,适合构建API和微服务。本教程演示如何在VS Code中使用FastAPI开发杂货清单应用,包括环境设置和代码实现。首先创建Python虚拟环境并安装fastapi、redis等依赖项。然后编写基础API路由,使用Pydantic定义数据模型,实现添加/查询商品功能。教程详细介绍了调试配置、端口设置以及通过/docs界面测试API的方法。项目展示了FastAPI的自动验证、文档生成等特性,帮助开发者快速构建RESTful服务。

2025-06-12 09:29:13 1276

原创 在VSCode中使用Ultralytics扩展

VS Code 的 Ultralytics-snippets 扩展是一款提升开发效率的工具,专为 Ultralytics 应用开发设计。该扩展通过智能代码补全、预置代码片段和自动化任务,帮助开发者快速编写高质量代码。主要功能包括:1)一键插入常用代码模板(如模型初始化、结果处理);2)支持自定义变量名和快速导航;3)覆盖关键参数、示例代码等实用类别;4)兼容 YOLO、SAM 等多种模型。安装后输入前缀「ultra」即可调用,显著简化开发流程,是高效构建 Ultralytics 应用的得力助手。

2025-06-08 19:10:02 1457

原创 YOLO11解决方案之分析

Ultralytics基于YOLO11提供了多种现实世界解决方案,包括物体计数、追踪和安全监控等功能。它支持三种数据可视化类型:折线图(适合趋势分析)、条形图(适合类别对比)和饼图(适合比例展示)。该框架提供Python API,可处理视频流并实时生成分析结果,参数包括检测置信度、跟踪算法选择和可视化选项。不同分析类型(线图、面积图、条形图、饼图)均可直观展示检测数据,适用于安防监控、交通分析等多种场景。

2025-06-07 17:29:07 891

原创 使用VSCode开发Django指南

摘要: 本文介绍了使用VSCode开发Django应用的基本流程。首先创建虚拟环境并安装Django,然后通过django-admin命令初始化项目结构,运行开发服务器验证配置。接着创建Django应用,配置URL路由和视图函数,最终实现一个简单的“Hello, Django”页面。此外,还指导如何配置VSCode的调试启动文件(launch.json),方便快速运行和调试项目。通过虚拟环境隔离依赖,结合VSCode的终端、代码编辑和调试功能,为开发者提供了高效的Django开发体验。

2025-06-06 21:14:38 1706

原创 使用VSCode开发Flask指南

摘要:本文介绍了如何在VSCode中开发一个简单的Flask应用。Flask是一个轻量级Python Web框架,依赖扩展实现表单验证、数据库等功能。文章详细讲解了创建虚拟环境、安装Flask、编写"Hello Flask"示例、使用调试器、模板渲染和静态文件管理等步骤。重点包括:通过Jinja模板引擎实现页面继承,创建代码片段提高模板开发效率,以及使用VSCode的智能提示和调试功能。

2025-06-05 09:46:22 1922

原创 使用FastAPI构建车牌检测识别服务

本文介绍了基于YOLOv11和CRNN的车牌检测识别系统。系统采用YOLOv11进行高效车牌检测,通过CCPD数据集训练获得高精度模型。识别部分使用CRNN网络,在多种车牌数据集上训练,实现准确的车牌内容识别。核心代码封装在PlateRecognizer类中,包含检测识别、结果标注等功能。该系统借助深度学习技术,实现了从输入图像到车牌识别的完整流程,具有较高的实用性和准确性,适用于多种实际应用场景。

2025-06-02 20:06:07 1102

原创 使用VSCode在WSL和Docker中开发

通过WSL,开发人员可以安装 Linux 发行版,并直接在 Windows 上使用 Linux 应用程序、实用程序和 Bash 命令行工具,不用进行任何修改,也无需使用传统虚拟机或设置成双启动系统。借助 Docker Desktop for Windows 中支持的 WSL 2 后端,可以在基于 Linux 的开发环境中工作并生成基于 Linux 的容器,同时使用 Visual Studio Code 进行代码编辑和调试。

2025-05-31 15:03:20 1551

原创 YOLO11解决方案之语义图像搜索

本方案使用OpenAI CLIP、Meta FAISS 构建语义图像搜索引擎,通过将 CLIP 强大的可视化语言嵌入与 FAISS 高效的近邻搜索相结合,使用自然语言查询检索相关图像。本方案使用Flask构建演示WEB Server,建立了一个功能齐全的WEB图像搜索系统。

2025-05-27 11:13:53 853

原创 YOLO11解决方案之区域追踪探索

TrackZone 用来监控指定区域内的目标,而不是整个画面,它基于 Ultralytics YOLO11,专门在视频和实时摄像机传输的区域内集成了目标检测和跟踪功能。YOLO11 TrackZone 的先进算法和深度学习技术使其成为实时应用的完美选择,可在人群监控和安防等应用中提供精确、高效的目标跟踪。

2025-05-25 21:04:57 1267

原创 YOLO11解决方案之使用 Streamlit 应用程序进行实时推理

Streamlit 使构建和部署交互式网络应用程序变得简单,将其与Ultralytics YOLO11 结合使用,可以直接在浏览器中进行实时对象检测和分析。YOLO11 的高精度和高速度确保了实时视频流的流畅性能,能够帮助用户快速分析视频流。

2025-05-24 16:33:03 706

原创 YOLO11解决方案之速度估算探索

YOLO11速度估计结合物体检测与跟踪技术,通过计算物体在帧间的移动距离和帧频来估算速度,适用于交通分析、自动驾驶和安全分析等场景。本文展示了如何使用Python实现速度估计的演示界面,支持在图像中画线或框,并输出叠加了类别和速度的视频。文章还介绍了基于Tkinter的GUI演示程序,用户可以通过界面打开视频文件、绘制检测区域,并实时查看物体速度信息。

2025-05-23 20:29:00 1114

原创 YOLO11解决方案之VisonEye对象映射

Ultralytics的VisionEye解决方案利用YOLO模型实现物体识别与跟踪,模拟人眼视角,从固定点聚焦并绘制物体路径。其核心功能包括物体检测、跟踪和空间关系可视化,适用于安防监控、零售分析、运动分析、自动驾驶及人机交互等场景。通过结合距离计算或速度估算,VisionEye可构建更复杂的综合系统。演示代码展示了如何使用VisionEye处理视频,并实时显示物体与视觉点之间的距离。

2025-05-21 13:24:14 1352

原创 YOLO11解决方案之实例分割与跟踪探索

实例分割是一项计算机视觉任务,涉及在像素级别识别和勾勒图像中的单个对象。与只按类别对像素进行分类的语义分割不同,实例分割对每个对象实例进行唯一标记和精确划分,因此对于需要详细空间理解的应用(如医疗成像、自动驾驶和工业自动化)来说至关重要。

2025-05-19 20:42:06 1417

原创 YOLO11解决方案之锻炼监测探索

在运动评估方面,YOLO11能够实时准确地跟踪身体关键点和关节,提供即时反馈、跟踪锻炼程序并测量性能指标,从而优化训练课程。文章还提供了使用YOLO11进行锻炼监测的演示代码,并详细介绍了YOLO11姿势模型中的17个关键点及其对应的人体部位。此外,文章还讨论了AIGym参数设置,包括基本参数、物体跟踪参数和可视化参数,并通过仰卧起坐和跳绳的测试效果展示了如何调整参数。

2025-05-18 09:39:11 1380

原创 YOLO11解决方案之对象裁剪探索

对象裁剪是指从图像或视频中分离并提取特定的检测对象,YOLO11 模型功能可用于准确识别和划分物体,从而实现精确裁剪,以便进一步分析或处理。使用YOLO11 可以方便的对目标对象进行裁剪,可对场景中的单个项目进行深入检查或处理,同时可以显著降低数据量,方便传输和存储。

2025-05-16 20:32:42 379

原创 YOLO11解决方案之距离计算探索

测量两个物体之间的间距被称为特定空间内的距离计算,YOLO11使用两个边界框的中心点计算距离。使用距离计算,可以提供计算机视觉任务中比较精确的空间定位,分析视频环境中的对象关系,通过监控移动物体之间的距离,使系统能够检测到潜在的碰撞,为自动驾驶或者交通监控等应用提供更好的空间场景理解能力。

2025-05-15 21:58:07 1082

原创 YOLO11解决方案之队列管理探索

队列管理涉及组织和控制排队的人员或车辆,以减少等待时间并提高效率。在市内交通、港口、零售、机场及其他服务业等各种环境中,它涉及优化队列,以提高客户满意度和系统性能。YOLO11队列管理可提供队列长度和等待时间的即时数据,使管理人员能够快速做出明智决策。

2025-05-15 15:40:04 850

原创 YOLO11解决方案之热力图探索

使用YOLO11生成的热力图把复杂的数据转换成生动的彩色编码矩阵。这种可视化工具采用色谱来表示不同的数据值,暖色调表示较高的强度,冷色调表示较低的值。热力图在可视化复杂的数据模式、相关性和异常情况方面表现出色,为不同领域的数据解读提供了一种直观可视化方法。

2025-05-14 20:58:03 978

原创 YOLO11解决方案之物体模糊探索

物体模糊是指对图像或视频中的特定检测对象应用模糊处理,这可以利用YOLO11 模型的功能来识别和处理给定场景中的物体,保护隐私权或隐藏敏感信息。

2025-05-13 22:17:17 652

原创 YOLO11解决方案之物体计数探索

YOLO11 在实时应用中表现出色,凭借其先进的算法和[深度学习](https://www.ultralytics.com/glossary/deep-learning-dl)能力,可为人群分析、交通分析和移动监控等各种场景提供高效、精确的物体计数。本文使用Python实现了简单的演示界面,可以在图像中画线或者框,运行推理,输出计数结果。

2025-05-10 18:39:13 1529

原创 YOLO11预测返回结果plot方法解析

YOLO11 predict()返回Results对象,检测任务的主要数据包括原始图像、原图像尺寸、边界框、类别及其置信度、xywh(中心坐标、宽度和高度)及其归一化数据、xyxy(左上、右下坐标)及其归一化数据。其他任务的推理返回结果包含其特定的数据。

2025-05-08 20:37:35 1760

原创 使用YOLO11-OBB进行停车场检测

OBB定向物体检测在标准物体检测基础上,引入了一个额外的角度来更准确地定位图像中的物体,能够更准确的预测物体的形状、运动方向等特征。

2025-05-05 17:53:18 1366

原创 YOLO11-classify预测返回结果分析

图像分类是YOLO任务中最简单的一项,涉及将图像内容归入一组预定义类别中的某一类。图像分类器的输出是单一类别标签和置信度分数。当你只需要知道图像属于哪一类,而不需要知道该类对象的位置或确切形状时,图像分类就非常有用。

2025-05-01 13:31:03 1017

原创 YOLO11-SEGMENT预测返回结果分析

实例分割模型的输出是一组勾勒出图像中每个物体的遮罩或轮廓,以及每个物体的类标签和置信度分数。当你不仅需要知道物体在图像中的位置,还需要知道它们的具体形状时,实例分割就非常有用了。

2025-04-30 08:20:39 1390

原创 YOLO11-POSE预测返回结果分析

姿态估计是一项涉及识别图像中特定点(通常称为关键点)位置的任务。关键点可以代表物体的各个部分,如关节、地标或其他显著特征。关键点的位置通常用一组二维 [x, y] 或 三维 [x, y, visible] 坐标。

2025-04-28 15:02:50 1243

原创 YOLO11-OBB预测返回结果分析

相比标准物体检测,OBB引入了一个额外的角度来更准确地定位图像中的物体,预测输出是一组精确包围图像中物体的旋转边界框。当物体以不同角度出现时,定向边界框尤其有用,例如在航空图像中,传统的轴对齐边界框可能会包含不必要的背景。YOLO-obb 预测返回的是Python list类型的 Results 对象,包含的数据项很多,结构比较复杂,本文进行详细介绍。

2025-04-27 20:24:58 1281

基于VSCode的Django开发入门:创建、调试与模板化Web应用

内容概要:本文档《使用VSCode开发Django入门教程.pdf》详细介绍如何使用VSCode创建和运行一个简单的Django应用程序。主要内容涵盖创建虚拟环境、安装Django、创建和运行Django项目、创建Django应用、配置调试器、使用模板、提供静态文件、创建多个模板、处理数据模型和迁移等步骤。教程通过具体操作指导开发者熟悉VSCode的功能,如终端、编辑器、调试器和代码片段等,并逐步构建一个包含多个页面的Web应用,最终实现数据库操作和数据展示。 适合人群:具有一定Python基础,特别是对Web开发感兴趣的初学者和中级开发者,以及希望通过VSCode提升Django开发效率的开发者。 使用场景及目标:①掌握在VSCode中搭建Django开发环境,包括创建虚拟环境和安装依赖;②学会创建和配置Django项目及应用;③熟悉调试器的使用,包括创建调试配置文件和设置断点;④理解Django模板系统的使用,包括创建和扩展模板;⑤掌握静态文件的管理和使用;⑥学习Django的数据模型定义和数据库迁移操作。 阅读建议:本教程以实践为主,建议读者跟随教程一步步操作,确保每个步骤都能成功运行。特别注意虚拟环境的创建和激活,以及调试器的配置和使用。在学习过程中,可以通过修改代码和模板来加深理解,并尝试解决遇到的问题。

2025-06-06

Web开发使用VSCode构建Flask应用入门教程

内容概要:本文档是一份详细的《使用VSCode开发Flask入门教程》,全面介绍如何使用VSCode创建和运行Flask应用。首先介绍了Flask作为轻量级Python框架的特点及其依赖扩展。接着详细描述了如何在VSCode中创建项目开发环境,包括创建虚拟环境、安装Flask、编写基础代码、启动开发服务器等步骤。随后讲解了如何在VSCode中调试Flask应用,包括设置断点、使用调试工具栏、观察变量值等。接下来介绍了如何使用Jinja2模板引擎渲染页面,避免直接在代码中生成HTML带来的安全风险。最后讲述了如何提供静态文件(如CSS样式表和JSON数据)以及创建多个继承自基本模板的页面,提高代码复用性和维护性。 适合人群:有一定Python编程基础,初次接触Flask框架并对VSCode开发环境感兴趣的开发者。 使用场景及目标:①熟悉Flask框架的基础概念和工作流程;②掌握在VSCode中创建、运行和调试Flask应用的方法;③学会使用模板引擎和静态文件优化Web应用的用户体验;④理解如何通过模板继承构建多页面Web应用。 阅读建议:建议读者按照文档顺序逐步实践,特别是在创建虚拟环境、编写代码和调试阶段,务必亲手操作以加深理解。对于模板和静态文件部分,可以尝试修改现有代码或添加新功能来巩固所学知识。

2025-06-04

停车场停车和空位检测训练小型数据集

停车场停车和空位检测训练小型数据集,已经划分训练、验证和测试集,YOLO txt格式标注。

2025-05-29

【Python编程】Python安装与基础使用教程:涵盖安装步骤、环境配置及第三方模块安装方法

内容概要:本文档详细介绍了Python的安装、初步使用、第三方模块安装以及虚拟环境管理。安装部分涵盖了从Python官网下载安装包、Windows系统下的默认与自定义安装流程,以及安装后的环境变量验证。初步使用部分展示了Python的两种运行模式(命令行模式和交互模式),并以“Hello World”为例进行了演示。此外,还介绍了简单的数学运算操作。第三方模块安装部分讲解了如何使用pip工具安装如opencv这样的第三方库。最后,文档阐述了虚拟环境的概念及其重要性,并分别介绍了基于`venv`和`conda`的虚拟环境创建、激活、退出及删除方法。 适合人群:对Python编程有兴趣的初学者,尤其是那些刚开始接触Python安装和环境配置的新手。 使用场景及目标:①帮助用户掌握Python在Windows系统上的安装步骤;②使用户能够编写简单的Python程序并执行基本的数学运算;③指导用户安装所需的第三方模块;④让用户学会创建和管理Python虚拟环境,确保不同项目之间的依赖隔离。 阅读建议:对于初次接触Python的读者来说,建议按顺序阅读,先熟悉安装过程,再逐步尝试编写和运行简单的Python代码。在学习过程中,实际动手操作非常重要,尤其是在安装第三方模块和配置虚拟环境时,应多加练习,确保掌握每一个步骤。

2025-05-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除