这里只是最简单的解说和证明。
数论分块常用于解决一类问题:∑i=1XXi\sum_{i=1}^{X}\frac{X}{i}∑i=1XiX
用数论分块解决的同式:
首先我们要了解Xi\frac{X}{i}iX最多只有2N2\sqrt{N}2N个不同的值。
所以数列呈现出来的样子是这样的:yzcbbdddddyzcbbdddddyzcbbddddd
我们只要求出来对应相同值的区间即可。
解决方案:枚举左端点和右端点。右端点等于NNl\frac{N}{\frac{N}{l}}lNN。具体证明不提(目前我也不会。
所以模板是这样的:
for(int l=1,r;l<=n;l=r+1){
r=n/(n/l);
ans+=(n/l)*(r-l+1);
}
如果我们要求∑i=1XXiA[i]\sum_{i=1}^{X}\frac{X}{i}A[i]∑i=1XiXA[i]呢?
类似做法:
因为从上面我们可以发现序列是不断地连续的,我们可以计算连续区间。
为了减少常数,记录上一个右端点结果。(用树状数组访问前缀和。
ll ans=0;
ll xx=0,yy;
for(int l=1,r;l<=n;l=r+1){
r=n/(n/l);
yy=que(r);
ans+=(yy-xx)*(n/l);
xx=yy;
//cout<<l<<" "<<r<<" "<<que(r)-que(l-1)<<endl;
}
但正解是这样的:
ans+=que(n/l)*(r-l+1);
怎么理解呢?
首先我们知道贡献是这样的:
对于n=10n=10n=10
10a1+5a2+3a3+2a4+2a5+1a6....1010a1+5a2+3a3+2a4+2a5+1a6....1010a1+5a2+3a3+2a4+2a5+1a6....10
如果对于第iii个值的贡献,显然是Ni\frac{N}{i}iN。
而第Ni\frac{N}{i}iN个值的贡献是iii。
当iii是某个块最左端,那么Ni\frac{N}{i}iN必然是另一个块的最右端,这是因为整除的原因。
如果我们对后者的贡献求前缀和,起到的作用就是对前者的贡献+1+1+1,再往后去前缀和取不到第iii位,而往前的都能取到。
那么对于第iii位最后计算的总贡献就是Ni\frac{N}{i}iN。
从而得证。
感性理解就是:它把每个点的贡献拆分多步让每个值分摊。