浅谈数论分块

本文深入探讨了数论分块算法,一种高效解决特定数学序列问题的技术。通过枚举左右端点,算法能有效计算不同值区间的贡献,特别适用于求解形如∑i=1XXi\sum_{i=1}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里只是最简单的解说和证明。

数论分块常用于解决一类问题:∑i=1XXi\sum_{i=1}^{X}\frac{X}{i}i=1XiX
用数论分块解决的同式:
首先我们要了解Xi\frac{X}{i}iX最多只有2N2\sqrt{N}2N个不同的值。
所以数列呈现出来的样子是这样的:yzcbbdddddyzcbbdddddyzcbbddddd
我们只要求出来对应相同值的区间即可。

解决方案:枚举左端点和右端点。右端点等于NNl\frac{N}{\frac{N}{l}}lNN。具体证明不提(目前我也不会。

所以模板是这样的:

    for(int l=1,r;l<=n;l=r+1){
        r=n/(n/l);
        ans+=(n/l)*(r-l+1);
    }

如果我们要求∑i=1XXiA[i]\sum_{i=1}^{X}\frac{X}{i}A[i]i=1XiXA[i]呢?
类似做法:
因为从上面我们可以发现序列是不断地连续的,我们可以计算连续区间。
为了减少常数,记录上一个右端点结果。(用树状数组访问前缀和。

    ll ans=0;
    ll xx=0,yy;
    for(int l=1,r;l<=n;l=r+1){
        r=n/(n/l);
        yy=que(r);
        ans+=(yy-xx)*(n/l);
        xx=yy;
        //cout<<l<<" "<<r<<" "<<que(r)-que(l-1)<<endl;
    }

但正解是这样的:

ans+=que(n/l)*(r-l+1);

怎么理解呢?
首先我们知道贡献是这样的:
对于n=10n=10n=10
10a1+5a2+3a3+2a4+2a5+1a6....1010a1+5a2+3a3+2a4+2a5+1a6....1010a1+5a2+3a3+2a4+2a5+1a6....10
如果对于第iii个值的贡献,显然是Ni\frac{N}{i}iN
而第Ni\frac{N}{i}iN个值的贡献是iii
iii是某个块最左端,那么Ni\frac{N}{i}iN必然是另一个块的最右端,这是因为整除的原因。
如果我们对后者的贡献求前缀和,起到的作用就是对前者的贡献+1+1+1,再往后去前缀和取不到第iii位,而往前的都能取到。
那么对于第iii位最后计算的总贡献就是Ni\frac{N}{i}iN
从而得证。

感性理解就是:它把每个点的贡献拆分多步让每个值分摊。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值