numpy.any、numpy.all (两个对 bool array 极其有用的函数)

本文详细介绍了NumPy库中的any与all函数的使用方法,包括如何通过这些函数检查数组中是否存在真值或全部为真值的情况。此外,还探讨了函数中的关键参数如axis、keepdims和where的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy.any(arr, axis=None, out=None, keepdims=<no value>, *, where=<no value>)

如果对函数中的这些参数还不了解的话,可以看这篇文章:

《NumPy sum、mean、cumsum 及参数 axis,keepdims,where 的含义》

any 检测是否 array 中沿某个维度有任意一个元素为 True。如果没有指定 axis,那么返回的是一个布尔值,表明整个 array 中是否有元素为 True。

import numpy as np

bools = np.array([False, False, True, False])
bools.any()
"""
True
"""
np.any([[True, False], [False, False]], axis=0)
"""
array([ True, False])
"""

当然,对于非布尔类型的 array,any 方法也可以 work,非零元素代表 True

arr = np.array([[2, 4, 0], [1, 0, 0]])
arr.any(axis=0)
"""
array([ True,  True, False])
"""

numpy.all(arr, axis=None, out=None, keepdims=<no value>, *, where=<no value>)

any 只需保证任意一个元素为 True,而 all 则需要保证所有考察的元素为 True

bools.all()
"""
False
"""
arr = np.array([[2, 4, 0], [1, 0, 0]])
arr.all(axis=0)
"""
array([ True, False, False])
"""

Not a Number (NaN) 表示 True

np.all([2, 4, np.nan])
"""
True
"""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如松茂矣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值