回溯算法总结

回溯算法介绍

参考:代码随想录
1. 定义
回溯算法是一种搜索算法,回溯是递归的副产品,只要有递归就有回溯,回溯函数就是递归函数,对于回溯的优化就是剪枝
回溯是在集合中递归搜索,回溯问题可以抽象为树形结构,集合的大小构成了树的宽度(for循环),递归的深度构成了数的深度
在这里插入图片描述

2. 可解决的问题

  • 组合问题:n个数中按一定规则找出k个数的集合
  • 排列问题:n个数中按一定规则全排列
  • 切割问题:一个字符串按一定规则切割
  • 子集问题:n个数的集合中符合条件的子集
  • 棋盘问题:n皇后,数独

3. 回溯的模板

void backreacking(参数) {
        if (终止条件) {
            存放结果;
            return;
        }
         //单层遍历逻辑
        for (选择:本层集合元素(树中节点孩子的数量就是结合的大小)) {
            处理节点;
            backreacking(路径,选择列表);//递归函数
            回溯,撤销处理结果;
        }
    }

组合

组合无序,排列有序

77. 组合

题目:给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。你可以按 任何顺序 返回答案

链接:https://leetcode.cn/problems/combinations/

代码:

    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public List<List<Integer>> combine(int n, int k) {
        backtracking(n, k, 1);
        return res;
    }
    
    public void backtracking(int n, int k, int startIndex) {
        // 终止条件
        if (path.size() == k) {
            res.add(new ArrayList<>(path));
            return;
        }
        // 剪枝优化:i <= n - (k - path.size()) + 1;
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i ++) {
            path.add(i); // 处理节点
            backtracking(n, k, i + 1); // 递归
            path.remove(path.size() - 1); // 回溯
        }
    }

216. 组合总和 III

题目:找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:只使用数字1到9;每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。

链接:https://leetcode.cn/problems/combination-sum-iii/

代码:

    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public List<List<Integer>> combinationSum3(int k, int n) {
        backtracking(k, n, 0, 1);
        return res;
    }
    public void backtracking(int k, int n, int sum, int startIndex) {
        // 剪枝优化
        if (sum > n) return;
        // 终止条件
        if (path.size() == k) {
            if (sum == n) {
                res.add(new ArrayList(path));
                return;
            }
        }
        // 2种剪枝,卡哥是第一种,我发现第二种效果更好
        // i <= 9 - (k - path.size()) + 1
        // i <= 9 && sum + i <= n  
        for (int i = startIndex; i <= 9 && sum + i <= n; i ++) {
            sum += i;
            path.add(i);
            backtracking(k, n, sum, i + 1);
            sum -= i;
            path.remove(path.size() - 1);
        }
    }

17. 电话号码的字母组合

题目:给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。

链接:https://leetcode.cn/problems/letter-combinations-of-a-phone-number/

代码:

class Solution {
    List<String> res = new ArrayList<>();
    StringBuilder path = new StringBuilder();
    String[] letterMap = {
            "", // 0
            "", // 1
            "abc", // 2
            "def", // 3
            "ghi", // 4
            "jkl", // 5
            "mno", // 6
            "pqrs", // 7
            "tuv", // 8
            "wxyz", // 9
    };
    public List<String> letterCombinations(String digits) {
        if (digits.length() == 0) return res;
        backtracking(digits, 0);
        return res;
    }

    // index:遍历到第几个数字
    public void backtracking(String digits, int index) {
        // 终止条件
        if (index == digits.length()) {
            res.add(path.toString());
            return;
        }
        int digit = digits.charAt(index) - '0'; // 获取数字
        String letters = letterMap[digit]; // 获取字母
        // 遍历
        for (int i = 0; i < letters.length(); i ++) {
            path.append(letters.charAt(i));
            backtracking(digits, index + 1);
            path.deleteCharAt(path.length() - 1);
        }
    } 
}

39. 组合总和

题目:给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。 对于给定的输入,保证和为 target 的不同组合数少于 150 个。

链接:https://leetcode.cn/problems/combination-sum/

代码:

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        Arrays.sort(candidates); // 后面剪枝优化需要先排序
        backtracking(candidates, target, 0, 0);
        return res;
    }

    public void backtracking(int[] candidates, int target, int sum, int startIndex) {
        // 剪枝
        if (sum > target) return;
        // 终止条件
        if (target == sum) {
            res.add(new ArrayList<>(path));
            return;
        }
        // 遍历
        // 剪枝:candidates[i] + sum <= target
        for (int i = startIndex; i < candidates.length && candidates[i] + sum <= target; i ++) {
            sum += candidates[i];
            path.add(candidates[i]);
            backtracking(candidates, target, sum, i); // 注意:不是i+1,因为所取的元素是可以重复的
            sum -= candidates[i];
            path.remove(path.size() - 1);
        }
    }
}

40. 组合总和 II

题目:给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。注意:解集不能包含重复的组合

链接:https://leetcode.cn/problems/combination-sum-ii/

思路:关键是去重操作,常规剪枝

在这里插入图片描述

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    boolean[] used;
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        Arrays.sort(candidates); // 排序
        backtracking(candidates, target, 0, 0);
        return res;
    }

    public void backtracking(int[] candidates, int target, int sum, int startIndex) {
        // 剪枝
        if (sum > target) return;
        if (sum == target) {
            res.add(new ArrayList<>(path));
            return;
        }   
        for (int i = startIndex; i < candidates.length && candidates[i] + sum <= target; i ++) {
            // 去重:i > startIndex  剪枝;candidates[i] + sum <= target
            if (i > startIndex && candidates[i] == candidates[i - 1]) {
                continue;
            }
            sum += candidates[i];
            path.add(candidates[i]);
            backtracking(candidates, target, sum, i + 1);
            sum -= candidates[i];
            path.remove(path.size() - 1);
        }
    }
}

分割

131. 分割回文串

题目:给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。

链接:tps://leetcode.cn/problems/palindrome-partitioning/

思路:分割

分割问题终止条件;双指针判断回文

代码:

class Solution {
    List<List<String>> res = new ArrayList<>();
    List<String> path = new ArrayList<>();
    public List<List<String>> partition(String s) {
        backtracking(s, 0);
        return res;
    }

    public void backtracking(String s, int startIndex) {
        // 终止条件
        if (startIndex >= s.length()) {
            res.add(new ArrayList<>(path));
            return;
        }
        for (int i = startIndex; i < s.length(); i ++) {
            if (isPalindorm(s, startIndex, i)) { // 是回文字符串
                String str = s.substring(startIndex, i + 1);
                path.add(str);
            } else {
                continue;
            }
            backtracking(s, i + 1);
            path.remove(path.size() - 1);
        }
    }

    // 双指针判断是否是回文字符串
    public boolean isPalindorm(String s, int start, int end) {
        for (int i = start, j = end; i < j; i ++, j--) {
            if (s.charAt(i) != s.charAt(j)) {
                return false;
            }
        }
        return true;
    }
}

子集

78. 子集

题目:给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)

链接:https://leetcode.cn/problems/subsets/

代码:

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public List<List<Integer>> subsets(int[] nums) {
        backtracking(nums, 0);
        return res;
    }

    public void backtracking(int[] nums, int startIndex) {
        // 可以不加终止条件     
        res.add(new ArrayList<>(path));
        for (int i = startIndex; i < nums.length; i ++) {
            path.add(nums[i]);
            backtracking(nums, i + 1);
            path.remove(path.size() - 1);
        }
    }
}

90. 子集 II

题目:给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的子集(幂集)。

解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列

链接:https://leetcode.cn/problems/subsets-ii/

思路:排序+去重

代码:

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public List<List<Integer>> subsetsWithDup(int[] nums) {
        Arrays.sort(nums);
        backtracking(nums, 0);
        return res;
    }

    public void backtracking(int[] nums, int startIndex) {
        res.add(new ArrayList<>(path));

        for (int i = startIndex; i < nums.length; i ++) {
            // 去重
            if (i > startIndex && nums[i - 1] == nums[i]) {
                continue;
            }
            path.add(nums[i]);
            backtracking(nums, i + 1);
            path.remove(path.size() - 1);
        }
    }
}

排列

491. 递增子序列

题目:给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。

数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况

链接:https://leetcode.cn/problems/increasing-subsequences/

思路:注意:此题不能对原数组进行排序

题目要求递增子序列,如果排序后去重结果不正确

代码:

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public List<List<Integer>> findSubsequences(int[] nums) {
        backtracking(nums, 0);
        return res;
    }

    public void backtracking(int[] nums, int startIndex) {
        if (path.size() >= 2) {
            res.add(new ArrayList<>(path));
        }

        int[] used = new int[201]; // 题目说数值范围[-100, 100]
        for (int i = startIndex; i < nums.length; i ++) {
            // 注意:此题不能事先对数组进行排序,题目要求需要求递增子序列,因此原来的去重方法就不能使用了
            // 
            if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) || (used[nums[i] + 100] == 1)) continue;
            used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了

            path.add(nums[i]);
            backtracking(nums, i + 1);
            path.remove(path.size() - 1);
        }
    }
}

46. 全排列

题目:给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案
链接:https://leetcode.cn/problems/permutations/
思路:回溯,used数组记录元素是否已被使用

代码:

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    boolean[] used;
    public List<List<Integer>> permute(int[] nums) {
        used = new boolean[nums.length];
        backtracking(nums);
        return res;
    }

    public void backtracking(int[] nums) {
        // 说明找到了一组排列
        if (path.size() == nums.length) {
            res.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i ++) {
            if (used[i] == true) continue; // path里已经收录的元素
            used[i] = true;
            path.add(nums[i]);
            backtracking(nums);
            used[i] = false;
            path.remove(path.size() - 1);
        }
    }
}

47. 全排列 II

题目:给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
链接:https://leetcode.cn/problems/permutations-ii/
思路:关键:去重

代码:

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    boolean[] used;
    public List<List<Integer>> permuteUnique(int[] nums) {
        used = new boolean[nums.length];
        Arrays.sort(nums);
        backtracking(nums);
        return res;
    }

    public void backtracking(int[] nums) {
        if (path.size() == nums.length) {
            res.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i ++) {
            // 去重:i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false
            // used[i] == true:path中已收录该元素
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false || used[i] == true) continue;
            used[i] = true;
            path.add(nums[i]);
            backtracking(nums);
            used[i] = false;
            path.remove(path.size() - 1);
        }
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值