
群体智能与进化计算
文章平均质量分 81
展示群体智能与进化计算,分享实验代码
异构算力老群群
博士在读: 山东大学 (985),
本硕: (双一流)(211)高校,
多年企业级系统开发经验,
研究方向:k8s(main) 安全 异构算力,软件工程,网络安全,物联网,优化算法,区块链;
️获得研究生国家奖学金,第一作者发表中科院SCI一区Top多篇,EI国际会议多篇,总计影响因子80+,单篇影响因子10.6,谷歌学术index引用180+;
欢迎交流科研心得,
I believe 数字未来,数字共享
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
群智能算法:【WOA】鲸鱼优化算法详细解读
在当今的优化问题中,随着问题复杂性的增加,传统的优化方法往往难以找到全局最优解。近年来,基于自然界动物行为的优化算法越来越受到研究者的关注。鲸鱼优化算法(Whale Optimization Algorithm, WOA)便是其中一种新兴的群体智能优化算法,它模拟了鲸鱼群体的捕食行为,具有较强的全局搜索能力和较快的收敛速度。本文将详细解读鲸鱼优化算法的原理、步骤,并通过Python代码展示其实现过程。原创 2024-08-01 16:45:58 · 955 阅读 · 1 评论 -
群智能算法:灰狼优化算法(GWO)的详细解读
灰狼隶属于群居生活的犬科动物,处于食物链的顶层,它们具有非常严格的社会等级结构。注意:在实际应用中,可能需要根据具体问题调整算法的参数,如狼群数量、迭代次数、搜索空间的边界等。此外,对于更复杂的问题,还需要引入其他优化策略来提高算法的性能。:第三等级的狼,服从于Alpha和Beta,并支配其他低等级的狼。:狼群中的头狼,主要负责决策,如捕食、栖息和作息时间等。:第四等级的狼,需要服从其他所有高等级的狼。在算法中,它们代表其余的候选解。灰狼优化算法通过模拟这种社会等级和狩猎行为,在解空间中搜索最优解。原创 2024-08-01 16:14:20 · 1310 阅读 · 0 评论 -
群智能算法:(JS)深入解读人工水母算法:原理、实现与应用
人工水母算法作为一种新兴的启发式优化算法,通过模拟自然界中水母的行为模式,为解决复杂优化问题提供了一种新的思路。人工水母算法是一种基于种群的优化算法,它通过模拟水母在海洋中的搜索和捕食行为来寻找问题的最优解。算法中的每个“水母”代表搜索空间中的一个可能解,通过模拟水母的游动和捕食行为,不断更新解的位置,从而逼近最优解。在实际应用中,更新水母位置的策略会更加复杂,可能包括模拟水母的收缩-扩张运动、跟随行为、避免碰撞等机制。:根据水母的当前位置和适应度值,以及预设的搜索策略,更新每个水母的位置和速度。原创 2024-08-01 15:57:01 · 548 阅读 · 0 评论