
视频单帧增强
文章平均质量分 69
mytzs123
大部分内容纯属为了记录,有错误之处,欢迎批评指正
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
A Low-complexity Neural Network for Compressed Video Post-processing in HEVC
输入视频通过编码器形成比特流,然后解码器将比特流解码为视频。然后,通过后处理方法提高重构视频质量。后处理:视频后处理是一种在解码器端提高重构帧质量的方法。该模型包括特征提取层、质量增强层和重构层三部分。基于学习的后处理方法介绍•单帧后处理•多帧后处理。HEVC中压缩视频后处理的低复杂度神经网络。原创 2022-09-07 19:58:39 · 252 阅读 · 0 评论 -
Enhancing Quality for HEVC Compressed Videos
提高HEVC压缩视频的质量Abstract最新的高效视频编码(HEVC)标准已越来越多地应用于在互联网上生成视频流。然而,HEVC压缩视频可能会导致严重的质量下降,尤其是在低比特率下。因此,有必要在解码器侧提高HEVC视频的视觉质量。为此,本文提出了一种质量增强卷积神经网络(QE-CNN)方法,该方法不需要修改编码器即可实现HEVC的质量增强。特别是,我们的QE-CNN方法学习QE-CNN-I和QE-CNN-P模型,以分别减少HEVC I和P/B帧的失真。该方法不同于现有的基于CNN的质量增强方法,后者仅处原创 2022-07-28 12:26:16 · 670 阅读 · 0 评论 -
Decoder-side hevc quality enhancement with scalable con-volutional neural network
此外,我们的DS-CNN中包含了一个可扩展的结构,因此我们的DSCNN方法的计算复杂度可以根据不断变化的计算资源进行调整。最后,实验结果表明,我们的DS-CNN方法在提高HEVC的I帧和B/P帧质量方面是有效的。此外,选择JCT-VC数据库中的赛马(480p)和篮球通行证(240p)作为验证序列.由于DS-CNN-B设计用于增强B/P帧的质量,因此训练序列均由HEVC使用随机存取(RA)。如[14,15]实验中所述,这些基于CNN的方法优于其他传统方法,如[4,6,7]。同样,获得了34500对验证样本。.原创 2022-07-25 21:32:29 · 19 阅读 · 0 评论