单相PWM整流器在旋转坐标系下的数学模型分析

本文对单相PWM整流器在旋转坐标系下的数学模型进行分析。先介绍常规KVL模型,阐述旋转坐标系原理,推导旋转坐标系中的数学模型,指出d轴和q轴存在耦合。接着提出电流解耦双闭环控制策略实现独立控制,最后给出高频信号完整控制框图并总结构建方法及解耦方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单相PWM整流器在旋转坐标系下的数学模型分析

1、单相PWM整流器常规KVL模型

在这里插入图片描述
  根据基尔霍夫电压定律(KVL)得:
Lsdis(t)dt=us(t)−Ris(t)−uab(t)(1) L_s\frac{di_s(t)}{dt}=u_s(t)-Ri_s(t)-u_{ab}(t) \tag{1} Lsdtdis(t)=us(t)Ris(t)uab(t)(1)
  其中usu_sus为网侧电压,isi_sis为网侧电流,uabu_{ab}uab为整流器侧输出电压,LsL_sLs为网侧滤波电感,RRR为回路寄生电阻,T1∼T4T_1\sim T_4T1T4为开关管,udcu_{dc}udc为直流母线电压,CCC为输出滤波电容,iLi_LiL为负载电流,RLR_LRL为直流负载,以整流方向为正(如上图)。

2、旋转坐标系的原理

在这里插入图片描述
  设置单相正弦量x(t)x(t)x(t)将其分解得:
x(t)=Xmcos(w0t−φ)=Xmcos(φ)cos(w0t)+Xmsin(φ)sin(w0t)(2) x(t)=X_mcos(w_0t-\varphi)=X_mcos(\varphi) cos(w_0t)+X_msin(\varphi)sin(w_0t) \tag{2} x(t)=Xmcos(w0tφ)=Xmcos(φ)cos(w0t)+Xmsin(φ)sin(w0t)(2)
  令Xd=Xmcos(φ)、Xq=Xmsin(φ)X_d=X_mcos(\varphi)、X_q=X_msin(\varphi)Xd=Xmcos(φ)Xq=Xmsin(φ)得:
x(t)=Xdcos(wot)+Xqsin(w0t)(3) x(t)=X_dcos(w_ot)+X_qsin(w_0t)\tag{3} x(t)=Xdcos(wot)+Xqsin(w0t)(3)
  将XdX_dXdXqX_qXq视作d-q坐标系中的直流量,若将d-q旋转坐标系的旋转角频率θ=w0t\theta =w_0tθ=w0t,通过I-Park变换可得到对应静止坐标系α−β\alpha- \betaαβα和β\alpha和\betaαβ正交,β\betaβ代表虚拟量)。由x(t)=Xdcos(w0t)+Xqsin(w0t)x(t)=X_dcos(w_0t)+X_qsin(w_0t)x(t)=Xdcos(w0t)+Xqsin(w0t)可知,若果可以找到与网侧电流正交的虚拟电流向量,便可构成虚拟的两相静止坐标系,进而利用Park变换将网侧电流等效为旋转坐标系下的直流量,从而通过设计适当PI调节器可以获得稳态网侧电流无静差的控制效果。
  对于上图理解:在α−β\alpha-\betaαβ坐标系中,以UsU_sUs信号作为参考,此时电流信号IsI_sIs与其有夹角φ\varphiφ,即此时电压电流不同相,但是最终目标是使得电压、电流同相,而此时对于在静态坐标系下不好处理电压、电流的关系,那么以电压UsU_sUs为参考构建d-q坐标系,此时电流在d-q坐标系的分量分别为Isd=Iscos(φ)I_{sd}=I_scos(\varphi)Isd=Iscos(φ)Isq=IssinφI_{sq}=I_ssin{\varphi}Isq=Issinφ,当电压和电流同相时φ=0\varphi=0φ=0,有功功率最大,无功功率最小。
  结合前面分析,简单理解为d-q坐标系的引入便分别将有功功率和无功功率绑定在d轴和q轴分量的变化上了。

3、旋转坐标系中的数学模型

  通过将实际网侧电流延迟1/4周期得到虚拟电流向量构造与α\alphaα轴正交的β\betaβ虚拟分量,那么设:
iα=is(t)=Imcos(w0t)iβ(t)=Imcos(w0t−π2)=Imsin(w0t)(4) i_\alpha=i_s(t)=I_mcos(w_0t)\\ i_\beta(t)=I_mcos(w_0t-\frac{\pi}{2})=I_msin(w_0t)\tag{4} iα=is(t)=Imcos(w0t)iβ(t)=Imcos(w0t2π)=Imsin(w0t)(4)
  选取电网电压usu_sus作为参考向量,根据Park变换矩阵,将**(4)式**代入其中,即:
Park变换矩阵
[dq]=[cosθsinθ−sinθcosθ][αβ](5) \left[ \begin{matrix} d\\ q\\ \end{matrix} \right]= \left[ \begin{matrix} cos\theta&sin\theta\\ -sin\theta&cos\theta\\ \end{matrix} \right] \left[ \begin{matrix} \alpha\\ \beta\\ \end{matrix} \right]\tag{5} [dq]=[cosθsinθsinθcosθ][αβ](5)
  θ=w0t\theta=w_0tθ=w0t得:
isd(t)=iα(t)cos(wot)+iβ(t)sin(w0t)isq(t)=−iβ(t)sin(w0t)+iβ(t)cos(w0t)(6) i_{sd}(t)=i_{\alpha}(t)cos(w_ot)+i_{\beta}(t)sin(w_0t)\\ i_{sq}(t)=-i_{\beta}(t)sin(w_0t)+i_{\beta}(t)cos(w_0t)\tag{6} isd(t)=iα(t)cos(wot)+iβ(t)sin(w0t)isq(t)=iβ(t)sin(w0t)+iβ(t)cos(w0t)(6)
  将(4)式代入(5)式得:
isd(t)=Imisq(t)=0(7) i_{sd}(t)=I_m\\ i_{sq}(t)=0\tag{7} isd(t)=Imisq(t)=0(7)
  其中id、iqi_d、i_qidiq分别为输入电流有功分量和无功分量的参考值。
  将相关变量代3式中得到相应的d轴和q轴的分量关系式:
is(t)=isd(t)cos(w0t)+isq(t)sin(w0t)us(t)=usd(t)cos(w0t)+isq(t)sin(w0t)uab(t)=uabd(t)cos(w0t)+uabq(t)sin(w0t)Ldis(t)dt=Ldisd(t)dtcos(w0t)+Ldisq(t)dtsin(w0t)−wLisd(t)sin(w0t)+wLisq(t)cos(w0t)(8) i_s(t)=i_{sd}(t)cos(w_0t)+i_{sq}(t)sin(w_0t)\\ u_s(t)=u_{sd}(t)cos(w_0t)+i_{sq}(t)sin(w_0t)\\ u_{ab}(t)=u_{abd}(t)cos(w_0t)+u_{abq}(t)sin(w_0t)\\ L\frac{di_s(t)}{dt}=L\frac{di_{sd}(t)}{dt}cos(w_0t)+L\frac{di_{sq}(t)}{dt}sin(w_0t)-wLi_{sd}(t)sin(w_0t)+wLi_{sq}(t)cos(w_0t)\tag{8} is(t)=isd(t)cos(w0t)+isq(t)sin(w0t)us(t)=usd(t)cos(w0t)+isq(t)sin(w0t)uab(t)=uabd(t)cos(w0t)+uabq(t)sin(w0t)Ldtdis(t)=Ldtdisd(t)cos(w0t)+Ldtdisq(t)sin(w0t)wLisd(t)sin(w0t)+wLisq(t)cos(w0t)(8)
  根据(1)式得各分量于d轴和q轴表达式:
Ldisd(t)dt+Risd(t)=usd(t)−wLisq(t)−uabd(t)Ldisq(t)dt+Risq(t)=usq(t)+wLisq(t)−uabq(t)(9) L\frac{di_{sd}(t)}{dt}+Ri_{sd}(t)=u_{sd}(t)-wLi_{sq}(t)-u_{abd}(t)\\ L\frac{di_{sq}(t)}{dt}+Ri_{sq}(t)=u_{sq}(t)+wLi_{sq}(t)-u_{abq}(t)\tag{9} Ldtdisd(t)+Risd(t)=usd(t)wLisq(t)uabd(t)Ldtdisq(t)+Risq(t)=usq(t)+wLisq(t)uabq(t)(9)
  进行移相处理得Uabd和Uabq表达式U_{abd}和U_{abq}表达式UabdUabq表达式
uabd(t)=usd(t)−wLisq(t)−Ldisd(t)dt−Risd(t)uabq(t)=usq(t)+wLisd(t)−Ldisq(t)dt−Risq(t)(10) u_{abd}(t)=u_{sd}(t)-wLi_{sq}(t)-L\frac{di_{sd}(t)}{dt}-Ri_{sd}(t)\\ u_{abq}(t)=u_{sq}(t)+wLi_{sd}(t)-L\frac{di_{sq}(t)}{dt}-Ri_{sq}(t)\tag{10} uabd(t)=usd(t)wLisq(t)Ldtdisd(t)Risd(t)uabq(t)=usq(t)+wLisd(t)Ldtdisq(t)Risq(t)(10)
  对(9)式进行拉普拉斯变换,得:
(R+sL)isd(s)=−uabd(s)+usd(s)−wLisq(s)(R+sL)isq(s)=−uabq(s)+usq(s)+wLisd(s)(11) (R+sL)i_{sd}(s)=-u_{abd}(s)+u_{sd}(s)-wLi_{sq}(s)\\ (R+sL)i_{sq}(s)=-u_{abq}(s)+u_{sq}(s)+wLi_{sd}(s)\tag{11} (R+sL)isd(s)=uabd(s)+usd(s)wLisq(s)(R+sL)isq(s)=uabq(s)+usq(s)+wLisd(s)(11)
  根据(11)式绘制控制框图,如下图所示:
在这里插入图片描述
  根据表达式(框图)均可易知,d轴和q轴存在耦合,在调节isd(t)i_{sd}(t)isd(t)时,isq(t)i_{sq}(t)isq(t)对其也产生作用,这也是稳态时网侧电流存在静差的原因。当其存在耦合,那么解耦便是必然的,通过同步旋转坐标变换将网侧电流解耦为d轴电流和q轴电流,采用PI控制器分别进行控制,实现无静差控制的多重非线性约束,从而获得良好的稳态性能。

4、电流解耦双闭环控制策略

  解耦的目标是为了实现d轴电流仅受电压控制,和q轴电压无关,即d轴电流和q轴电流实现独立控制。
  使用一个通过的做法是定义一组新的变量,将式(11)的右侧打包。
Udf(s)=−uabd(s)+usd(s)−wLisq(s)Uqf(s)=−uabq(s)+usq(s)+wLisd(s)(12) U_{df}(s)=-u_{abd}(s)+u_{sd}(s)-wLi_{sq}(s)\\ U_{qf}(s)=-u_{abq}(s)+u_{sq}(s)+wLi_{sd}(s)\tag{12} Udf(s)=uabd(s)+usd(s)wLisq(s)Uqf(s)=uabq(s)+usq(s)+wLisd(s)(12)
则:
(R+sL)isd(s)=Udf(s)(R+sL)isq(s)=Uqf(s)(13) (R+sL)i_{sd}(s)=U_{df}(s)\\ (R+sL)i_{sq}(s)=U_{qf}(s)\tag{13} (R+sL)isd(s)=Udf(s)(R+sL)isq(s)=Uqf(s)(13)
  根据上式绘制传递函数框图:
在这里插入图片描述当然解耦不是这么  简单就完了,因为只是简单的变量替换是无法完成解耦的,还要分别对Udf(s)U_{df}(s)Udf(s)Uqf(s)U_{qf}(s)Uqf(s)进行构造,即:
Udf(s)=[idref(s)−id(s)](Kpd+Kids)Uqf(s)=[iqref(s)−iq(s)](Kpq+Kiqs)(14) U_{df}(s)=[i_{dref}(s)-i_d(s)](Kp_{d}+\frac{Ki_d}{s})\\ U_{qf}(s)=[i_{qref}(s)-i_q(s)](Kp_{q}+\frac{Ki_q}{s})\tag{14} Udf(s)=[idref(s)id(s)](Kpd+sKid)Uqf(s)=[iqref(s)iq(s)](Kpq+sKiq)(14)
  根据(13、14)式绘制传递函数框图:
在这里插入图片描述
  对于d轴分量,在知道实际电流和参考电流的情况下通过PI控制器得到Udf(s)U_{df}(s)Udf(s),而isd(s)i_{sd}(s)isd(s)受控于Udf(s)U_{df}(s)Udf(s),如此一来便形成了一个经典的闭环控制,q轴同样类似。所以通过这样的处理的确可以实现将d轴和q轴分开控制。
根据(12~14)式得:
uabd(s)=usd(s)−wLisq(s)−[idref(s)−id(s)](Kpd+Kids)uabq(s)=usq(s)+wLisd(s)−[iqref(s)−iq(s)](Kpq+Kiqs)(15) u_{abd}(s)=u_{sd}(s)-wLi_{sq}(s)-[i_{dref}(s)-i_d(s)](Kp_{d}+\frac{Ki_d}{s})\\ u_{abq}(s)=u_{sq}(s)+wLi_{sd}(s)-[i_{qref}(s)-i_q(s)](Kp_{q}+\frac{Ki_q}{s})\tag{15} uabd(s)=usd(s)wLisq(s)[idref(s)id(s)](Kpd+sKid)uabq(s)=usq(s)+wLisd(s)[iqref(s)iq(s)](Kpq+sKiq)(15)
  由(15)式绘制解耦控制框图,如下所示:
电流环解耦控制器框图
  虽然看起来很复杂,但是从框图上不难看出d-q轴的控制逻辑是完全独立的,不会因为要控制其中的某一个对象而影响另外一个对象。

5、高频信号完整控制框图

在这里插入图片描述
  上图为高频信号完整控制框图。在本文中默认θ\thetaθ是已知的,实则需要通过其他控制模型获取。

5、总结

1、单相PWM整流(逆变)控制模型在构建同步旋转坐标系(d-q坐标系)时需要引进虚拟量与实际信号正交,在本文中使用的是延迟1/4周期法;
2、通过给引入PI控制实现对耦合项解耦,即:构造的PI项=打包的部分。
注意:耦合项框图与控制信号链路无关,可理解物理电路的实际信号链路。而电流解耦控制器的输出uabdu_{abd}uabduabqu_{abq}uabq才是要作用到电路上去的控制信号。

### 单相脉冲整流器预测电流控制设计实践 #### 设计背景与目标 单相脉宽调制(PWM)整流器因其高效能和高功率因数而被广泛应用于电力电子领域。为了提高系统的动态响应速度并减少谐波失真,预测电流控制成为一种有效的解决方案[^2]。 #### 预测电流控制原理 预测电流控制系统通过提前计算下一个采样周期内的期望电流值,并据此调整当前时刻的开关状态,从而实现精确的电流跟踪。该方法能够显著改善瞬态性能,降低稳态误差,同时具备较强的鲁棒性和抗干扰能力[^4]。 #### 控制算法构建 在MATLAB/Simulink环境中搭建单相PWM整流器模型时,可以采用不平衡d-q变换技术将交流侧变量转换到旋转坐标系下进行解耦控制。具体来说: 1. **建立数学模型** 对于单相电压源型PWM整流器,在αβ静止坐标系下的平均状态方程可表示为: \[ \begin{aligned} &\frac{{di_\alpha }}{{dt}}=\frac{1}{L}(v_{g,\alpha}-Ri_\alpha-v_{c,\alpha})\\ &\frac{{di_\beta}}{{dt}}=\frac{1}{L}(-wLi_q+v_{g,\beta}-Ri_\beta-v_{c,\beta}) \end{aligned} \] 经过Clarke变换后得到dq同步旋转坐标系中的表达式: ```matlab % Clarke Transform from abc to alpha-beta frame function [ia, ib] = clarke_transform(ia, ib, ic) ia = (sqrt(2)/2)*(ia - ib); ib = (-ic/sqrt(6)) + ((ia + ib)/(sqrt(6))); end ``` 2. **引入预测机制** 基于上述模型,利用离散化后的差分方程对未来时刻的状态量做出预估。考虑到实际应用场景中存在的不确定因素影响,通常还会加入补偿环节以增强系统稳定性。 ```matlab % Predictive Current Control Algorithm Implementation function u_pred = predictive_current_control(i_ref_d, i_ref_q, id_k, iq_k, vdc, R, L, Ts) Kp = ... ; Ki = ... ; e_d = i_ref_d - id_k; e_q = i_ref_q - iq_k; omega = 2*pi*freq; % Angular frequency of grid voltage delta_id = -(e_d*Kp + integral(e_d)*Ki + omega*L*iq_k)*Ts/L; delta_iq = -(e_q*Kp + integral(e_q)*Ki - omega*L*id_k)*Ts/L; ud_pred = vdc*(delta_id*cos(theta)-delta_iq*sin(theta)); uq_pred = vdc*(delta_id*sin(theta)+delta_iq*cos(theta)); u_pred = sqrt(ud_pred^2 + uq_pred^2); end ``` 3. **Simulink仿真验证** 使用MATLAB内置工具箱完成整个控制策略的建模工作,并借助Scope模块观察输入输出信号的变化趋势。特别注意设置合理的参数范围以便获得理想的实验效果[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值