单相PWM整流器在旋转坐标系下的数学模型分析
1、单相PWM整流器常规KVL模型
根据基尔霍夫电压定律(KVL)得:
Lsdis(t)dt=us(t)−Ris(t)−uab(t)(1)
L_s\frac{di_s(t)}{dt}=u_s(t)-Ri_s(t)-u_{ab}(t) \tag{1}
Lsdtdis(t)=us(t)−Ris(t)−uab(t)(1)
其中usu_sus为网侧电压,isi_sis为网侧电流,uabu_{ab}uab为整流器侧输出电压,LsL_sLs为网侧滤波电感,RRR为回路寄生电阻,T1∼T4T_1\sim T_4T1∼T4为开关管,udcu_{dc}udc为直流母线电压,CCC为输出滤波电容,iLi_LiL为负载电流,RLR_LRL为直流负载,以整流方向为正(如上图)。
2、旋转坐标系的原理
设置单相正弦量x(t)x(t)x(t)将其分解得:
x(t)=Xmcos(w0t−φ)=Xmcos(φ)cos(w0t)+Xmsin(φ)sin(w0t)(2)
x(t)=X_mcos(w_0t-\varphi)=X_mcos(\varphi) cos(w_0t)+X_msin(\varphi)sin(w_0t) \tag{2}
x(t)=Xmcos(w0t−φ)=Xmcos(φ)cos(w0t)+Xmsin(φ)sin(w0t)(2)
令Xd=Xmcos(φ)、Xq=Xmsin(φ)X_d=X_mcos(\varphi)、X_q=X_msin(\varphi)Xd=Xmcos(φ)、Xq=Xmsin(φ)得:
x(t)=Xdcos(wot)+Xqsin(w0t)(3)
x(t)=X_dcos(w_ot)+X_qsin(w_0t)\tag{3}
x(t)=Xdcos(wot)+Xqsin(w0t)(3)
将XdX_dXd、XqX_qXq视作d-q坐标系中的直流量,若将d-q旋转坐标系的旋转角频率θ=w0t\theta =w_0tθ=w0t,通过I-Park变换可得到对应静止坐标系α−β\alpha- \betaα−β(α和β\alpha和\betaα和β正交,β\betaβ代表虚拟量)。由x(t)=Xdcos(w0t)+Xqsin(w0t)x(t)=X_dcos(w_0t)+X_qsin(w_0t)x(t)=Xdcos(w0t)+Xqsin(w0t)可知,若果可以找到与网侧电流正交的虚拟电流向量,便可构成虚拟的两相静止坐标系,进而利用Park变换将网侧电流等效为旋转坐标系下的直流量,从而通过设计适当PI调节器可以获得稳态网侧电流无静差的控制效果。
对于上图理解:在α−β\alpha-\betaα−β坐标系中,以UsU_sUs信号作为参考,此时电流信号IsI_sIs与其有夹角φ\varphiφ,即此时电压电流不同相,但是最终目标是使得电压、电流同相,而此时对于在静态坐标系下不好处理电压、电流的关系,那么以电压UsU_sUs为参考构建d-q坐标系,此时电流在d-q坐标系的分量分别为Isd=Iscos(φ)I_{sd}=I_scos(\varphi)Isd=Iscos(φ)、Isq=IssinφI_{sq}=I_ssin{\varphi}Isq=Issinφ,当电压和电流同相时φ=0\varphi=0φ=0,有功功率最大,无功功率最小。
结合前面分析,简单理解为d-q坐标系的引入便分别将有功功率和无功功率绑定在d轴和q轴分量的变化上了。
3、旋转坐标系中的数学模型
通过将实际网侧电流延迟1/4周期得到虚拟电流向量构造与α\alphaα轴正交的β\betaβ虚拟分量,那么设:
iα=is(t)=Imcos(w0t)iβ(t)=Imcos(w0t−π2)=Imsin(w0t)(4)
i_\alpha=i_s(t)=I_mcos(w_0t)\\
i_\beta(t)=I_mcos(w_0t-\frac{\pi}{2})=I_msin(w_0t)\tag{4}
iα=is(t)=Imcos(w0t)iβ(t)=Imcos(w0t−2π)=Imsin(w0t)(4)
选取电网电压usu_sus作为参考向量,根据Park变换矩阵,将**(4)式**代入其中,即:
Park变换矩阵
[dq]=[cosθsinθ−sinθcosθ][αβ](5)
\left[
\begin{matrix}
d\\
q\\
\end{matrix}
\right]=
\left[
\begin{matrix}
cos\theta&sin\theta\\
-sin\theta&cos\theta\\
\end{matrix}
\right]
\left[
\begin{matrix}
\alpha\\
\beta\\
\end{matrix}
\right]\tag{5}
[dq]=[cosθ−sinθsinθcosθ][αβ](5)
θ=w0t\theta=w_0tθ=w0t得:
isd(t)=iα(t)cos(wot)+iβ(t)sin(w0t)isq(t)=−iβ(t)sin(w0t)+iβ(t)cos(w0t)(6)
i_{sd}(t)=i_{\alpha}(t)cos(w_ot)+i_{\beta}(t)sin(w_0t)\\
i_{sq}(t)=-i_{\beta}(t)sin(w_0t)+i_{\beta}(t)cos(w_0t)\tag{6}
isd(t)=iα(t)cos(wot)+iβ(t)sin(w0t)isq(t)=−iβ(t)sin(w0t)+iβ(t)cos(w0t)(6)
将(4)式代入(5)式得:
isd(t)=Imisq(t)=0(7)
i_{sd}(t)=I_m\\
i_{sq}(t)=0\tag{7}
isd(t)=Imisq(t)=0(7)
其中id、iqi_d、i_qid、iq分别为输入电流有功分量和无功分量的参考值。
将相关变量代3式中得到相应的d轴和q轴的分量关系式:
is(t)=isd(t)cos(w0t)+isq(t)sin(w0t)us(t)=usd(t)cos(w0t)+isq(t)sin(w0t)uab(t)=uabd(t)cos(w0t)+uabq(t)sin(w0t)Ldis(t)dt=Ldisd(t)dtcos(w0t)+Ldisq(t)dtsin(w0t)−wLisd(t)sin(w0t)+wLisq(t)cos(w0t)(8)
i_s(t)=i_{sd}(t)cos(w_0t)+i_{sq}(t)sin(w_0t)\\
u_s(t)=u_{sd}(t)cos(w_0t)+i_{sq}(t)sin(w_0t)\\
u_{ab}(t)=u_{abd}(t)cos(w_0t)+u_{abq}(t)sin(w_0t)\\
L\frac{di_s(t)}{dt}=L\frac{di_{sd}(t)}{dt}cos(w_0t)+L\frac{di_{sq}(t)}{dt}sin(w_0t)-wLi_{sd}(t)sin(w_0t)+wLi_{sq}(t)cos(w_0t)\tag{8}
is(t)=isd(t)cos(w0t)+isq(t)sin(w0t)us(t)=usd(t)cos(w0t)+isq(t)sin(w0t)uab(t)=uabd(t)cos(w0t)+uabq(t)sin(w0t)Ldtdis(t)=Ldtdisd(t)cos(w0t)+Ldtdisq(t)sin(w0t)−wLisd(t)sin(w0t)+wLisq(t)cos(w0t)(8)
根据(1)式得各分量于d轴和q轴表达式:
Ldisd(t)dt+Risd(t)=usd(t)−wLisq(t)−uabd(t)Ldisq(t)dt+Risq(t)=usq(t)+wLisq(t)−uabq(t)(9)
L\frac{di_{sd}(t)}{dt}+Ri_{sd}(t)=u_{sd}(t)-wLi_{sq}(t)-u_{abd}(t)\\
L\frac{di_{sq}(t)}{dt}+Ri_{sq}(t)=u_{sq}(t)+wLi_{sq}(t)-u_{abq}(t)\tag{9}
Ldtdisd(t)+Risd(t)=usd(t)−wLisq(t)−uabd(t)Ldtdisq(t)+Risq(t)=usq(t)+wLisq(t)−uabq(t)(9)
进行移相处理得Uabd和Uabq表达式U_{abd}和U_{abq}表达式Uabd和Uabq表达式:
uabd(t)=usd(t)−wLisq(t)−Ldisd(t)dt−Risd(t)uabq(t)=usq(t)+wLisd(t)−Ldisq(t)dt−Risq(t)(10)
u_{abd}(t)=u_{sd}(t)-wLi_{sq}(t)-L\frac{di_{sd}(t)}{dt}-Ri_{sd}(t)\\
u_{abq}(t)=u_{sq}(t)+wLi_{sd}(t)-L\frac{di_{sq}(t)}{dt}-Ri_{sq}(t)\tag{10}
uabd(t)=usd(t)−wLisq(t)−Ldtdisd(t)−Risd(t)uabq(t)=usq(t)+wLisd(t)−Ldtdisq(t)−Risq(t)(10)
对(9)式进行拉普拉斯变换,得:
(R+sL)isd(s)=−uabd(s)+usd(s)−wLisq(s)(R+sL)isq(s)=−uabq(s)+usq(s)+wLisd(s)(11)
(R+sL)i_{sd}(s)=-u_{abd}(s)+u_{sd}(s)-wLi_{sq}(s)\\
(R+sL)i_{sq}(s)=-u_{abq}(s)+u_{sq}(s)+wLi_{sd}(s)\tag{11}
(R+sL)isd(s)=−uabd(s)+usd(s)−wLisq(s)(R+sL)isq(s)=−uabq(s)+usq(s)+wLisd(s)(11)
根据(11)式绘制控制框图,如下图所示:
根据表达式(框图)均可易知,d轴和q轴存在耦合,在调节isd(t)i_{sd}(t)isd(t)时,isq(t)i_{sq}(t)isq(t)对其也产生作用,这也是稳态时网侧电流存在静差的原因。当其存在耦合,那么解耦便是必然的,通过同步旋转坐标变换将网侧电流解耦为d轴电流和q轴电流,采用PI控制器分别进行控制,实现无静差控制的多重非线性约束,从而获得良好的稳态性能。
4、电流解耦双闭环控制策略
解耦的目标是为了实现d轴电流仅受电压控制,和q轴电压无关,即d轴电流和q轴电流实现独立控制。
使用一个通过的做法是定义一组新的变量,将式(11)的右侧打包。
Udf(s)=−uabd(s)+usd(s)−wLisq(s)Uqf(s)=−uabq(s)+usq(s)+wLisd(s)(12)
U_{df}(s)=-u_{abd}(s)+u_{sd}(s)-wLi_{sq}(s)\\
U_{qf}(s)=-u_{abq}(s)+u_{sq}(s)+wLi_{sd}(s)\tag{12}
Udf(s)=−uabd(s)+usd(s)−wLisq(s)Uqf(s)=−uabq(s)+usq(s)+wLisd(s)(12)
则:
(R+sL)isd(s)=Udf(s)(R+sL)isq(s)=Uqf(s)(13)
(R+sL)i_{sd}(s)=U_{df}(s)\\
(R+sL)i_{sq}(s)=U_{qf}(s)\tag{13}
(R+sL)isd(s)=Udf(s)(R+sL)isq(s)=Uqf(s)(13)
根据上式绘制传递函数框图:
当然解耦不是这么 简单就完了,因为只是简单的变量替换是无法完成解耦的,还要分别对Udf(s)U_{df}(s)Udf(s)和Uqf(s)U_{qf}(s)Uqf(s)进行构造,即:
Udf(s)=[idref(s)−id(s)](Kpd+Kids)Uqf(s)=[iqref(s)−iq(s)](Kpq+Kiqs)(14)
U_{df}(s)=[i_{dref}(s)-i_d(s)](Kp_{d}+\frac{Ki_d}{s})\\
U_{qf}(s)=[i_{qref}(s)-i_q(s)](Kp_{q}+\frac{Ki_q}{s})\tag{14}
Udf(s)=[idref(s)−id(s)](Kpd+sKid)Uqf(s)=[iqref(s)−iq(s)](Kpq+sKiq)(14)
根据(13、14)式绘制传递函数框图:
对于d轴分量,在知道实际电流和参考电流的情况下通过PI控制器得到Udf(s)U_{df}(s)Udf(s),而isd(s)i_{sd}(s)isd(s)受控于Udf(s)U_{df}(s)Udf(s),如此一来便形成了一个经典的闭环控制,q轴同样类似。所以通过这样的处理的确可以实现将d轴和q轴分开控制。
根据(12~14)式得:
uabd(s)=usd(s)−wLisq(s)−[idref(s)−id(s)](Kpd+Kids)uabq(s)=usq(s)+wLisd(s)−[iqref(s)−iq(s)](Kpq+Kiqs)(15)
u_{abd}(s)=u_{sd}(s)-wLi_{sq}(s)-[i_{dref}(s)-i_d(s)](Kp_{d}+\frac{Ki_d}{s})\\
u_{abq}(s)=u_{sq}(s)+wLi_{sd}(s)-[i_{qref}(s)-i_q(s)](Kp_{q}+\frac{Ki_q}{s})\tag{15}
uabd(s)=usd(s)−wLisq(s)−[idref(s)−id(s)](Kpd+sKid)uabq(s)=usq(s)+wLisd(s)−[iqref(s)−iq(s)](Kpq+sKiq)(15)
由(15)式绘制解耦控制框图,如下所示:
虽然看起来很复杂,但是从框图上不难看出d-q轴的控制逻辑是完全独立的,不会因为要控制其中的某一个对象而影响另外一个对象。
5、高频信号完整控制框图
上图为高频信号完整控制框图。在本文中默认θ\thetaθ是已知的,实则需要通过其他控制模型获取。
5、总结
1、单相PWM整流(逆变)控制模型在构建同步旋转坐标系(d-q坐标系)时需要引进虚拟量与实际信号正交,在本文中使用的是延迟1/4周期法;
2、通过给引入PI控制实现对耦合项解耦,即:构造的PI项=打包的部分。
注意:耦合项框图与控制信号链路无关,可理解物理电路的实际信号链路。而电流解耦控制器的输出uabdu_{abd}uabd和uabqu_{abq}uabq才是要作用到电路上去的控制信号。