13.1K Star,超越RAG,这个AI记忆框架直接把RAG按地上摩擦了!!!

 

目录

懒人上手攻略


刚刚在GitHub上刷到这个叫Graphiti的东西,卧槽,简直是AI智能体的记忆神器啊!

不是我吹牛,这玩意儿解决了一个超级大的痛点。你们知道吗,以前那些RAG系统都是静态的,数据一变就得重新搞,效率低到爆炸。。。

但是这个Graphiti,居然能实时更新知识图谱???

图片

AI智能体的记忆能力直接起飞1000%!这不是开玩笑的,是真的能做到连续增量更新。

emmm等等,我先理理思路。。。

好的,继续聊这个神器。

最变态的是双时态数据模型!不光记录事件发生时间,还追踪数据录入时间。想知道某个时间点AI知道啥,直接查就完事了。这设计思路。。。绝了!

跟微软那个GraphRAG比起来,简直是降维打击啊。GraphRAG还在搞批处理那套老古董,这边已经是毫秒级查询了。几十秒 vs 毫秒,差了好几个数量级好吗!

咦,突然想起来这个混合检索算法也挺吊的!

Graphiti temporal walkthrough

语义向量、关键词匹配、图遍历三管齐下,不依赖LLM总结就能低延迟查询。这种思路确实比纯靠大模型总结靠谱多了。

而且!!!支持自定义实体定义,用Pydantic模型就搞定。想要什么知识结构自己定义,这灵活性。。。爱了爱了。

不过话说回来,处理矛盾信息的方式真的很巧妙。不是简单粗暴地让LLM判断对错,而是通过时态边失效机制。老信息自动标无效,新信息覆盖旧信息,逻辑清晰得很。

技术栈支持也超级全面啊!Neo4j、FalkorDB做图数据库,OpenAI、Gemini、Anthropic这些大模型都能接。还支持本地Ollama部署,想要私有化也没问题。

对了!!!最有意思的是MCP服务器功能!

直接给Claude、Cursor这些AI助手提供知识图谱记忆???相当于让AI助手有了长期记忆,不再是对话结束就失忆的智障状态了。。。

emmm这个功能听起来就很香啊。

懒人上手攻略

安装超简单的说:

pip install graphiti-core

基础用法:

from graphiti_core import Graphiti

# 初始化(改个密码别用默认的)
graphiti = Graphiti(
    "bolt://localhost:7687",
    "neo4j", 
    "password"
)

# 喂数据
await graphiti.add_episode("用户买了iPhone 15")

# 搜索关系
results = await graphiti.search("iPhone购买记录")

Docker跑起来:

docker run -p 7687:7687 neo4j:latest

是不是贼简单???

说起来这个项目的架构设计也是个狠人做的。知识图谱、时态处理、混合检索、实体管理各个模块分离得很清楚,想定制哪个功能都很方便。

性能优化做得相当变态。并行处理、缓存机制、索引优化,大数据集处理完全扛得住。企业级应用?小意思啦。

代码质量看起来也不错,测试覆盖率在持续提升。社区活跃度挺高的,Discord频道里讨论很热烈。

说实话这种实时知识图谱思路确实颠覆了传统RAG局限性啊。让AI智能体具备真正的动态记忆能力,这对构建更智能应用意义重大

项目还在疯狂迭代中,最近刚发布v0.17.2版本。从更新频率看,团队投入精力很足啊。

咦,突然想起来这个Graphiti背后是Zep团队搞的???他们专门做AI记忆层的,从学术研究到工程实现基础都很扎实。项目靠谱程度应该挺高。

emmm不过我有点好奇,这种实时更新会不会有性能瓶颈?毕竟知识图谱越来越大的话。。。

算了,先用起来再说。反正开源免费,不用白不用。

而且这种记忆能力确实是刚需啊。现在的AI助手对话结束就失忆,体验真的很糟糕。有了这个框架,终于能让AI记住之前聊过的内容了

对了,这个项目好像还在快速发展中,功能迭代很频繁。说不定过段时间就有更牛逼的特性了。

不管怎么说,这绝对是今年最值得关注的AI基础设施项目之一!没用过的兄弟赶紧去试试,用了就知道多香了。

项目地址:https://github.com/getzep/graphiti

引入地址 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值