opencv阈值分割

本文介绍了OpenCV中的五种基本阈值分割方法:二值阈值化、反二值阈值化、截断阈值化、反阈值化为0以及阈值化为0。这些方法通过对像素灰度值的设定,改变图像的明暗区域,达到图像分割的效果。通过示例代码展示了如何在RGB图像上应用这些阈值化技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本的阈值分割有下面这几种:在这里插入图片描述
按图中由上到下的顺序是:
1.二进制阈值化(准确说是二值阈值化,因为这种情况下像素灰度取值只有两种,但并不是只能为0和1,实际上最大值是调用函数时自行规定的)。这种情况下如果两个取值是0和255那么就是当像素灰度大于阈值时变为255(白色),小于等于阈值都会变成0(黑色),对应的正是二值图像。

在这里插入图片描述
2.反二进制阈值化(是上面那种情况的反例)
在这里插入图片描述
3.截断阈值化
当大于阈值时灰度级就固定为阈值,灰度小于等于阈值的像素则保持不变,给图像带来的整体效果是看起来变得暗了一些。
在这里插入图片描述
4.反阈值化为0
这种情况是当灰度值大于阈值时就变为0,其余不变。会使原本明亮的像素变暗。
在这里插入图片描述
5.阈值化为0
当灰度值小于等于阈值就变为0,大于阈值时不变。
在这里插入图片描述
代码(这里我是用的不是灰度图像,而是使用了RGB图像):

#图像阈值化处理
import cv2 as cv
img = cv.imread("
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值