基本的阈值分割有下面这几种:
按图中由上到下的顺序是:
1.二进制阈值化(准确说是二值阈值化,因为这种情况下像素灰度取值只有两种,但并不是只能为0和1,实际上最大值是调用函数时自行规定的)。这种情况下如果两个取值是0和255那么就是当像素灰度大于阈值时变为255(白色),小于等于阈值都会变成0(黑色),对应的正是二值图像。
2.反二进制阈值化(是上面那种情况的反例)
3.截断阈值化
当大于阈值时灰度级就固定为阈值,灰度小于等于阈值的像素则保持不变,给图像带来的整体效果是看起来变得暗了一些。
4.反阈值化为0
这种情况是当灰度值大于阈值时就变为0,其余不变。会使原本明亮的像素变暗。
5.阈值化为0
当灰度值小于等于阈值就变为0,大于阈值时不变。
代码(这里我是用的不是灰度图像,而是使用了RGB图像):
#图像阈值化处理
import cv2 as cv
img = cv.imread("