基于可训练Step-size的低比特量化——LSQ: Learned Step-size Quantization

LSQ是一种低比特量化技术,它通过可训练的Step-size进行量化参数调整。该方法在权重和激活上采用Per-tensor量化,并允许Step-size作为可训练变量。实验表明,LSQ在不同量化比特数下都有较好的梯度数值,适用于模型压缩和量化训练。在PyTorch和TensorFlow中均有实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paper地址:https://arxiv.org/abs/1902.08153

GitHub地址 (PyTorch):GitHub - zhutmost/lsq-net: Unofficial implementation of LSQ-Net, a neural network quantization framework

基本量化设置

  • 计算结点伪量化:
  1. Weight跟Activation都采用Per-tensor量化;
  2. Scaling factor (Paper标记为Step size)作为量化参数,是可训练变量;
  3. 另外,针对TensorRT、MNN等推理引擎,Weight通常执行Per-channel量化,Activation执行Per-tensor量化;为了加快量化训练收敛,Activation的量化参数(可训练)可借助KL量化、或PyTorch observer量化予以初始化,Weight的量化参数则根据absmax方法在线更新;

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值