INT16乘累加防溢出量化训练——Overflow-aware Quantization

本文介绍了Overflow-aware Quantization(OAQ),一种利用INT16防止溢出的量化训练方法。OAQ在ARM平台上通过调整alpha因子自适应地控制整数量化范围,确保乘累加结果不溢出INT16范围,从而实现计算加速。MNN实现了对称量化形式的OAQ,并在ResNet18上展现出显著的加速效果,最高可达1.6倍于普通INT8的加速比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

image.png

 

基本原理

  • 文章基于TF-Lite的非对称量化训练算法,提出了INT16乘累加防溢出条件:

  • 总体来说,要求整数的中间乘累加、与最终累积结果不能溢出INT16范围;
  • 文章通过引入可调整的alpha因子,提出了整数量化范围的自适应调整机制:

### OpenVINO 支持的量化策略 OpenVINO 是英特尔推出的一款用于优化和部署深度学习模型的工具套件,它支持多种量化策略以提高推理性能并减少资源消耗。以下是常见的量化方法及其在 OpenVINO 中的支持情况: #### 权重量化 (Weight Quantization) 权重量化是一种基本的量化技术,通过降低权重张量的精度来减小模型大小和计算需求。OpenVINO 提供了对 INT8 和其他低精度数据类型的广泛支持[^2]。这种策略适用于大多数卷积神经网络(CNNs)和其他架构。 #### 后训练量化 (Post-Training Quantization, PTQ) 后训练量化允许开发者无需重新训练即可将浮点数模型转换为整数量化的版本。此过程依赖于统计分析激活分布,并调整缩放因子以最小化信息损失。OpenVINO 工具包内置有自动化流程来进行 PTQ,从而简化了这一复杂的任务[^2]。 #### 量化觉察训练 (Quantization-Aware Training, QAT) 虽然 QAT 不会直接影响预训练成本,但它确实增加了微调阶段的工作负载,因为需要模拟较低位宽运算的效果[^1]。对于那些希望进一步提升最终产品效率而愿意投入额外时间进行再训练的应用场景来说,这是一个非常有效的选择。值得注意的是,当采用 QAT 方法时,应考虑硬件平台特性以及目标设备上的实际表现差异。 #### 精度感知量化 (Accuracy-aware Quantization) 为了平衡性能增益与可能发生的质量下降之间关系,某些框架实现了所谓的“精度敏感型”或者叫作“准确性导向”的量化方案。这类算法试图找到最佳折衷点,在维持较高分类准确率的同时获得尽可能多的速度改进。Intel 的 Optimization Suite 包含此类功能模块,使得用户能够轻松探索不同设置下的效果变化趋势。 ```python from openvino.tools.pot import IEEngine, DataLoader, CompressionConfig compression_config = CompressionConfig(model_name="my_model", algorithms=["quantization"]) engine = IEEngine(config=compression_config, data_loader=DataLoader()) ``` 上述代码片段展示了如何利用 Python API 配置压缩配置文件并通过引擎实例启动量化进程的一个简单例子。 问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值