np.array与list的内存大小比较

本文通过实例比较了numpy.array与list在内存占用、CPU消耗和读写性能上的区别,特别探讨了在大量数据处理时两者的优势,并引用StackOverflow解答以验证内存计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. np.array与list 比较

a=[1,2,3,4]需要4个指针和四个数据,增加了存储和消耗cpu

a=np.array([1,2,3,4])只需要存放四个数据,读取和计算更加方便。

2. np.array与list所占内存

def test():
    nums = []
    for _ in range(900000):
        nums.append(np.random.randn())
    nums1 = np.array(nums)
    print(round(sys.getsizeof(nums) / 1024 / 1024, 2))  # 7.37M
    print(round(sys.getsizeof(nums1) / 1024 / 1024, 2))  # 6.87M--准确大小

注:python中float占64bit,对应8byte,所以900000个float的内存大小为:(900000*8)/(1024*1024) ≈ 6.87M

3. 参考

https://stackoverflow.com/questions/11784329/python-memory-usage-of-numpy-arrays
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值