opencv C++ SGBM/BM立体匹配,视差空洞消除,双目测距

这篇博客介绍了如何利用OpenCV进行立体视觉处理,包括从YAML文件读取相机内外参数,应用SGBM算法计算视差图,并通过极线矫正展示结果。同时,文章提供了编译OpenCV Contrib模块以包含ximgproc模块的步骤,解决了编译过程中可能遇到的问题。

git代码下载地址:GitHub - liuanqi-libra7/stereoVision: stereoVision

原始数据

输出优化后的视差结果

核心代码

#include <stdio.h>
#include <iostream>
#include <string>
#include <vector>
#include "opencv2/opencv.hpp"
#include "opencv2/ximgproc.hpp"

using namespace cv;
using namespace std;
using namespace ximgproc;

bool get_calib(std::string intrinsic_filename, std::string extrinsic_filename, Size img_size, vector<Mat>& matrixs) {
	FileStorage fs(intrinsic_filename, FileStorage::READ);
	if (!fs.isOpened())
	{
		printf("Failed to open file %s\n", intrinsic_filename.c_str());
		return false;
	}

	Mat M1, D1, M2, D2;
	fs["M1"] >> M1;
	fs["D1"] >> D1;
	fs["M2"] >> M2;
	fs["D2"] >> D2;

	fs.open(extrinsic_filename, FileStorage::READ);
	if (!fs.isOpened())
	{
		printf("Failed to open file %s\n", extrinsic_filename.c_str());
		return false;
	}

	Mat R, T, R1, P1, R2, P2;
	fs["R"] >> R;
	fs["T"] >> T;

	Rect roi1, roi2;
	Mat Q;

	stereoRectify(M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2);

	Mat map11, map12, map21, map22;
	initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map11, map12);
	initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map21, map22);
	matrixs.push_back(map11);
	matrixs.push_back(map12);
	matrixs.push_back(map21);
	matrixs.push_back(map22);
	matrixs.push_back(Q);

	return true;
}

int main(int argc, char** argv){

	std::string intrinsic_filename = "1280_720_intrinsics.yml";
	std::string extrinsic_filename = "1280_720_extrinsics.yml";
	Size img_size(1280, 720);

	//读取内外参数
	vector<Mat> matrixs;
	if (!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值