MySQL数据库之SQL优化

1 插入数据优化

1.1 insert优化

  • 批量插入
    •   # 批量插入时建议一次插入数据 500 - 1000 条
        insert into 表名(字段1, 字段2, ...) values(11,21,31, ...),(12,22,32, ...),...
      
  • 手动提交事务
    • MySQL默认自动提交事务,可改为手动提交
    •   start transaction;
        insert into 表名(字段1, 字段2, ...) values(11,21,31, ...),(12,22,32, ...),...
        commit;
      
  • 主键顺序插入

1.2 大批量插入数据

  • 如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。
  •   # 客户端连接服务端时,加上参数 --local-infile
      mysql --local-infile -u root -p
      
      # 设置全局参数 local_infile为1,开启从本地加载文件导入数据的开关
      set global local_infile=1
      
      # 执行load指令将准备好的数据,加载到表结构中
      load data local infile '/root/sql1.txt' into table tb_user fields terminated by ',' lines terminated by '\n';
    
  • 示例
    • root目录下有一份sql1.txt文件,内容如下
    • 在这里插入图片描述
    • 执行命令创建一张表
    •   create table infile_st(id int, name varchar(20), age int, course varchar(20));
      
    • 将本地文件导入
    •   load data local infile '/root/sql1.txt' into table infile_st fields terminated by ',' lines terminated by '\n';
      
    • 在这里插入图片描述

2 主键优化

  • 数据组织方式

  • 在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。

  • 页分裂

  • 页可以为空,也可以填充一半,也可以填充满。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。

  • 主键顺序插入

    • 请添加图片描述
  • 主键乱序插入

    • 请添加图片描述
  • 主键乱序插入时,page1发生分裂,这种现象称为页分裂

  • 页合并

  • 当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记为删除并且它的空间变得允许被其他记录声明使用。

  • 当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页看看是否可以将两个页合并以优化空间使用。

    • 请添加图片描述
  • 主键设计原则

  • 满足业务需要的情况下,尽量降低主键的长度

    • 一张表主键索引只能有一个,但二级索引可以有很多。二级索引数据部分是数据主键,如果主键过长,会占用较多磁盘空间。搜索时性能也会降低。
  • 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。

    • 主键乱序插入时会发生页分裂。
  • 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。

  • 业务操作时,避免对主键的修改。

3 order by优化

  • 对于MySQL中的排序,有两种方式:Using filesortUsing index
  • Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫filesort排序。
  • Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
  • 有这样一张表
    • 在这里插入图片描述
  • 看下表的索引,只有id有索引。
    • 在这里插入图片描述
  • 进行数据查询,并按照age排序,年龄相同时,按照phone排序。可以看到执行计划中,排序方式为Using filesort。
    • 在这里插入图片描述
  • 接下来为age和phone字段创建联合索引。再查询,可以看到,排序方式变为了Using index。
    • 在这里插入图片描述
  • 如果进行倒序排列,出现了反向扫描索引。
    • 在这里插入图片描述
  • 如果先按phone排序,再按age排序,违背了最左前缀法则,需要使用Using filesort进行额外排序。
    • 在这里插入图片描述
  • 如果age升序排列,phone降序排列,也要使用Using filesort进行额外排序。
    • 在这里插入图片描述
  • 如果想用age升序排列,phone降序排列。但是排序方式只用Using index,可以再创建一个联合索引,指定age为升序,phone为降序。查看索引结构,可以看到Collation这一列,phone的idx_age_phone_ad索引为D(desc),表示排序方式为降序,其他都为A(asc),表示降序。
    • 在这里插入图片描述
  • 再去查询,可以看到排序方式为Using index。
    • 在这里插入图片描述
  • 如果多查询一个字段name,可以看到排序方式只有Using filesort。因为没有使用到覆盖索引,需要回表查询。
    • 在这里插入图片描述
  • 优化规则
    • 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
    • 尽量使用覆盖索引。
    • 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
    • 如果不可避免地出现filesort,大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_size(默认为256k)。

4 group by优化

  • 有这样一张表,只有一个主键索引。
    • 在这里插入图片描述
  • 根据课程分组并统计对应人数,执行计划中没有用到索引,使用了Using temporary(临时表),性能较低。
    • 在这里插入图片描述
  • 创建联合索引,再分组查询。执行计划中用到了索引,没有用到临时表,性能提高。
    • 在这里插入图片描述
  • 如果直接用age分组,会用到临时表,因为违背了最左前缀法则。同时使用course和age分组,没有违背最左前缀法则,就不会用到临时表,性能较高。
    • 在这里插入图片描述
  • 如果只用age分组,但是用course过滤,也不会违背最左前缀法则,不会用到临时表。
    • 在这里插入图片描述

5 limit优化

  • 分页查询时, 通过创建覆盖索引能够较好的提高性能,可以通过覆盖索引加子查询形式进行优化。
  • 有一张person表,有10万条数据。执行分页查询,分别从第10条数据的位置和第90000条数据的位置查询。
    • 在这里插入图片描述
  • 可以看到,从第90000条数据的位置开始查询,耗时要远远大于从第10条数据的位置查询。
    • 在这里插入图片描述
  • 进行优化后,效率提升了一倍。
    • 在这里插入图片描述

6 count优化

  • MyISAM引擎把一个表的总行数存在了磁盘上,执行count(*)的时候会直接返回这个数,效率很高。
  • InnoDB引擎执行count(*)的时候,需要把数据一行一行读出来,然后累计计数。
  • count()是一个聚合函数,对于返回的结果集,一行行判断,如果count函数的返回不是NULL,累计值就加1,最后返回累计值。
  • 如果某个字段值为NULLcount()不计数。
    • 在这里插入图片描述
  • 用法count(*)count(主键)count(字段)count(1)
    • count(主键):InnoDB引擎会遍历整张表,把每一行的主键id都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(不会判断返回是否为NULL,因为主键不能为NULL)。
    • count(字段):没有not null约束,要额外判断是否为NULL,不是NULL再累加。有not null约束,则直接进行累加。
    • count(1):InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字1进去,直接进行累加。
    • count(*):InnoDB引擎并不会把全部字段取出来,二是专门做了优化,不取值,服务层直接按行进行累加。
  • 效率:count(字段)<count(主键)<count(1)≈\approxcount(*),所以尽量使用count(*)
  • 看下实际的执行效率
    • 在这里插入图片描述

7 update优化

  • InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。
  • 有一张课程表
    • 在这里插入图片描述
  • 左边和右边开启事务,左边更新id=1的数据,右边更新id=3的数据,都是没有问题的。
    • 在这里插入图片描述
    • 在这里插入图片描述
  • 重新开启事务,左边用teacher字段去更新,右边再更新数据,就阻塞了。由于teacher没有索引,会导致整张表被加锁,因此右边不能操作。
    • 在这里插入图片描述
  • 左边提交事务后,右边才能更新成功。

8 总结

  • 插入数据优化
    • insert:使用insert插入数据时尽量选择批量插入、手动控制事务、主键顺序插入。
    • 大批量插入:大批量插入数据时,通过加载本地文件的方式插入数据,load data local infile。
  • 主键优化
    • 主键长度尽量短,插入时顺序插入。
  • order by优化
    • MySQL排序,有两种方式
    • using index:排序时直接通过索引返回数据,性能高。
    • using filesort:排序时需要将返回的结果在排序缓冲区排序。
    • 尽量使用覆盖索引,涉及到的排序字段尽量创建索引。
  • group by优化
    • 多字段分组时要遵循最左前缀法则。
  • limit优化
    • 使用覆盖索引+子查询的方式提高效率。
  • count优化
    • 效率:count(字段)<count(主键)<count(1)≈\approxcount(*),尽量使用count(*)
  • update优化
    • 尽量根据有索引的字段更新,防止行锁升级为表锁,降低性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大草原的小灰灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值