1 插入数据优化
1.1 insert优化
- 批量插入
-
# 批量插入时建议一次插入数据 500 - 1000 条 insert into 表名(字段1, 字段2, ...) values(值11, 值21, 值31, ...),(值12, 值22, 值32, ...),...
-
- 手动提交事务
- MySQL默认自动提交事务,可改为手动提交
-
start transaction; insert into 表名(字段1, 字段2, ...) values(值11, 值21, 值31, ...),(值12, 值22, 值32, ...),... commit;
- 主键顺序插入
1.2 大批量插入数据
- 如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的
load
指令进行插入。 -
# 客户端连接服务端时,加上参数 --local-infile mysql --local-infile -u root -p # 设置全局参数 local_infile为1,开启从本地加载文件导入数据的开关 set global local_infile=1 # 执行load指令将准备好的数据,加载到表结构中 load data local infile '/root/sql1.txt' into table tb_user fields terminated by ',' lines terminated by '\n';
- 示例
root
目录下有一份sql1.txt
文件,内容如下- 执行命令创建一张表
-
create table infile_st(id int, name varchar(20), age int, course varchar(20));
- 将本地文件导入
-
load data local infile '/root/sql1.txt' into table infile_st fields terminated by ',' lines terminated by '\n';
2 主键优化
-
数据组织方式
-
在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。
-
页分裂
-
页可以为空,也可以填充一半,也可以填充满。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。
-
主键顺序插入
-
主键乱序插入
-
主键乱序插入时,page1发生分裂,这种现象称为页分裂。
-
页合并
-
当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记为删除并且它的空间变得允许被其他记录声明使用。
-
当页中删除的记录达到
MERGE_THRESHOLD
(默认为页的50%),InnoDB会开始寻找最靠近的页看看是否可以将两个页合并以优化空间使用。 -
主键设计原则
-
满足业务需要的情况下,尽量降低主键的长度
- 一张表主键索引只能有一个,但二级索引可以有很多。二级索引数据部分是数据主键,如果主键过长,会占用较多磁盘空间。搜索时性能也会降低。
-
插入数据时,尽量选择顺序插入,选择使用
AUTO_INCREMENT
自增主键。- 主键乱序插入时会发生页分裂。
-
尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
-
业务操作时,避免对主键的修改。
3 order by优化
- 对于MySQL中的排序,有两种方式:
Using filesort
和Using index
- Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫filesort排序。
- Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
- 有这样一张表
- 看下表的索引,只有id有索引。
- 进行数据查询,并按照age排序,年龄相同时,按照phone排序。可以看到执行计划中,排序方式为Using filesort。
- 接下来为age和phone字段创建联合索引。再查询,可以看到,排序方式变为了Using index。
- 如果进行倒序排列,出现了反向扫描索引。
- 如果先按phone排序,再按age排序,违背了最左前缀法则,需要使用Using filesort进行额外排序。
- 如果age升序排列,phone降序排列,也要使用Using filesort进行额外排序。
- 如果想用age升序排列,phone降序排列。但是排序方式只用Using index,可以再创建一个联合索引,指定age为升序,phone为降序。查看索引结构,可以看到Collation这一列,phone的idx_age_phone_ad索引为D(desc),表示排序方式为降序,其他都为A(asc),表示降序。
- 再去查询,可以看到排序方式为Using index。
- 如果多查询一个字段name,可以看到排序方式只有Using filesort。因为没有使用到覆盖索引,需要回表查询。
- 优化规则
- 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
- 尽量使用覆盖索引。
- 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
- 如果不可避免地出现filesort,大数据量排序时,可以适当增大排序缓冲区大小
sort_buffer_size
(默认为256k)。
4 group by优化
- 有这样一张表,只有一个主键索引。
- 根据课程分组并统计对应人数,执行计划中没有用到索引,使用了Using temporary(临时表),性能较低。
- 创建联合索引,再分组查询。执行计划中用到了索引,没有用到临时表,性能提高。
- 如果直接用age分组,会用到临时表,因为违背了最左前缀法则。同时使用course和age分组,没有违背最左前缀法则,就不会用到临时表,性能较高。
- 如果只用age分组,但是用course过滤,也不会违背最左前缀法则,不会用到临时表。
5 limit优化
- 分页查询时, 通过创建覆盖索引能够较好的提高性能,可以通过覆盖索引加子查询形式进行优化。
- 有一张person表,有10万条数据。执行分页查询,分别从第10条数据的位置和第90000条数据的位置查询。
- 可以看到,从第90000条数据的位置开始查询,耗时要远远大于从第10条数据的位置查询。
- 进行优化后,效率提升了一倍。
6 count优化
- MyISAM引擎把一个表的总行数存在了磁盘上,执行
count(*)
的时候会直接返回这个数,效率很高。 - InnoDB引擎执行
count(*)
的时候,需要把数据一行一行读出来,然后累计计数。 count()
是一个聚合函数,对于返回的结果集,一行行判断,如果count函数的返回不是NULL,累计值就加1,最后返回累计值。- 如果某个字段值为
NULL
,count()
不计数。 - 用法
count(*)
、count(主键)
、count(字段)
、count(1)
count(主键)
:InnoDB引擎会遍历整张表,把每一行的主键id都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(不会判断返回是否为NULL,因为主键不能为NULL)。count(字段)
:没有not null约束,要额外判断是否为NULL,不是NULL再累加。有not null约束,则直接进行累加。count(1)
:InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字1进去,直接进行累加。count(*)
:InnoDB引擎并不会把全部字段取出来,二是专门做了优化,不取值,服务层直接按行进行累加。
- 效率:
count(字段)
<count(主键)
<count(1)
≈\approx≈count(*)
,所以尽量使用count(*)
。 - 看下实际的执行效率
7 update优化
- InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。
- 有一张课程表
- 左边和右边开启事务,左边更新id=1的数据,右边更新id=3的数据,都是没有问题的。
- 重新开启事务,左边用teacher字段去更新,右边再更新数据,就阻塞了。由于teacher没有索引,会导致整张表被加锁,因此右边不能操作。
- 左边提交事务后,右边才能更新成功。
8 总结
- 插入数据优化
- insert:使用insert插入数据时尽量选择批量插入、手动控制事务、主键顺序插入。
- 大批量插入:大批量插入数据时,通过加载本地文件的方式插入数据,load data local infile。
- 主键优化
- 主键长度尽量短,插入时顺序插入。
- order by优化
- MySQL排序,有两种方式
- using index:排序时直接通过索引返回数据,性能高。
- using filesort:排序时需要将返回的结果在排序缓冲区排序。
- 尽量使用覆盖索引,涉及到的排序字段尽量创建索引。
- group by优化
- 多字段分组时要遵循最左前缀法则。
- limit优化
- 使用覆盖索引+子查询的方式提高效率。
- count优化
- 效率:
count(字段)
<count(主键)
<count(1)
≈\approx≈count(*)
,尽量使用count(*)
。
- 效率:
- update优化
- 尽量根据有索引的字段更新,防止行锁升级为表锁,降低性能。