对旋转矩阵最本质的理解应该就是按照他的数学定义来,就是一个坐标系 B 相对于另外一个坐标系 A 的姿态,在很多数中都记为 aRb=[ab⃗1,ab⃗2,ab⃗3]^aR_b=[^a\vec{b}_1,^a\vec{b}_2,^a\vec{b}_3]aRb=[ab1,ab2,ab3] , 对于同一个向量,他在坐标系B中的表示 bv⃗^b\vec{v}bv,与在坐标系A中的表示av⃗^a\vec{v}av , 满足关系式:
av⃗=(aRb)bv⃗ ^a\vec{v} = (^aR_b) ^b\vec{v}av=(aRb)bv
而对于一个向量在同一个坐标系中的旋转,我们要通过反向思维,假设是坐标系反向动了,那么前后的坐标相当于两个不同坐标系之间的变换。