前面专门讨论过秩为1的矩阵,由Ax=0有n-1个线性无关向量,联想到:Aα=0⋅α
,知道0必是A的特征值,且是n-1重特征值。
这样的性质如果单独考察,就过于简单了。在另一篇文章中总结过秩为1的矩阵求幂的思路。
http://blog.csdn.net/u011240016/article/details/52805663
这个做法也是通用的,即:秩为1的矩阵可以抽出两个向量之积。这个积是:列向量x行向量。
不妨设α,β
是列向量。那么αβT\alpha \beta^TαβT
就是一个秩为1的矩阵。
而如果给定一个秩为1的矩阵,如何抽出两个向量呢?
行向量就是矩阵的任意一行,列向量是这一行的三个倍数。
比如:
A=[21−163−3−4−22]=[13−2]⋅[21−1]A = {\left[\begin{array}{ccc} 2 & 1 & -1 \\ 6 & 3 & -3 \\ -4 & -2 & 2 \end{array}\right]} = {\left[\begin{array}{c} 1 \\ 3 \\ -2 \end{array}\right]} \cdot {\left[\begin{array}{ccc} 2& 1 & -1 \end{array}\right]}A=26−413−2−1−32=13−2⋅[21−1]
还有一点非常奇妙的是:αTβ\alpha^T \betaαTβ 是一个数。且这个数不是随便的数。而是矩阵的迹。
其中矩阵的绩等于特征值之和。