好消息,Spring AI 最新快照版已经内置 MiniMax 了,之后在项目里对接 MiniMax 会方便许多。不过快照版存在不少 Bug,所以今天我们就来探讨稳定版的 Spring AI 怎样对接 MiniMax 全功能版。在这之前,先看看它们各自的优势以及相互结合的意义。
Spring AI 和 MiniMax 优势对比与介绍
Spring AI 优势
- 生态融合性强
Spring AI 作为 Spring 生态的一部分,能与 Spring 框架无缝集成。对于已经使用 Spring 构建应用的开发者来说,无需大幅调整架构就能轻松引入 AI 能力,极大地降低了集成成本和学习成本。
- 多模型支持
它几乎支持所有主流的 AI 模型提供商,如 Anthropic、OpenAI、Microsoft、Amazon、Google 和 Ollama 等。这种广泛的支持使得开发者可以根据项目需求灵活选择合适的模型,而不必受限于单一的模型供应商。
- 功能丰富
提供了聊天、嵌入、附件处理、文本转图片、音频转文本、文本转音频等多种功能。开发者可以利用这些功能快速搭建多样化的 AI 应用,满足不同业务场景的需求。
MiniMax 优势
- 定制灵活性高
MiniMax 可依据不同场景和需求进行定制化配置。无论是智能客服、内容创作还是智能交互等场景,都能通过调整参数和模型配置,实现精准适配,满足多样化的业务要求。
- 性能卓越
在自然语言处理领域有深厚的技术积累,能够精准理解用户意图,生成高质量的回复内容。同时,它的响应速度快,能高效处理大规模的文本数据,保证服务的稳定性和可靠性。
- 本土适应性好
作为国内研发的大模型,MiniMax 对中文语境和国内业务场景有更好的理解和适应性。在处理中文文本时,能够更准确地把握语义和文化背景,提供更符合国内用户需求的服务。
结合优势
将 Spring AI 与 MiniMax 结合,开发者既能利用 Spring AI 在 Spring 生态中的便利性和多模型支持能力,又能发挥 MiniMax 在定制化和性能方面的优势。这样可以快速构建出高效、稳定且具有针对性的 AI 应用,提升项目的竞争力和用户体验。
Spring AI 集成 MiniMax 步骤如下
- 环境准备
在开启集成工作前,要保证开发环境满足以下条件:
JDK 17 或更高版本
Maven 或 Gradle 构建工具
MiniMax API Key(可通过官网注册获取),申请地址:https://api.minimax.chat/
1、创建 Spring Boot 项目
利用 Spring Initializr 或者其他工具创建一个新的 Spring Boot 项目,确保版本为 3.2.x 或更高。
2、添加依赖
在项目的 pom.xml
文件中添加 Spring AI 和 MiniMax 的相关依赖。以下是基于 Maven 的依赖配置示例:
<dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-openai-spring-boot-starter</artifactId> </dependency></dependencies>
3、配置文件
在 application.properties
或 application.yml
文件中添加 MiniMax 的配置信息:
# 必填项spring.ai.openai.api-key=your-apikeyspring.ai.openai.base-url=https://api.minimax.chat/v1# 模型选择(示例使用对话模型)spring.ai.openai.chat.options.model=abab5.5-chat
其中,api-key
是你在 MiniMax 官网注册后获取的密钥,base-url
是 MiniMax API 的服务地址,model
指定使用的模型版本。
4、MiniMax 模型介绍
MiniMax 目前支持以下几种常见模型:
- abab5.5-chat
:适用于各类聊天场景,如智能客服、聊天机器人等,能够自然流畅地与用户进行对话交流。
- abab5.5-text
:专注于文本生成任务,可用于内容创作、文案撰写等,生成的文本质量高、逻辑性强。
5、编写代码
创建一个控制器类,用于处理与 MiniMax 的交互,以下是一个简单的示例:
import org.springframework.beans.factory.annotation.Autowired;import org.springframework.web.bind.annotation.*;@RestController@RequestMapping("/api/chat")public class ChatController { @Autowired private MiniMaxClient miniMaxClient; @PostMapping public String chat(@RequestBody String message) { return miniMaxClient.chatCompletion(message).getOutput().getContent(); } @GetMapping(value = "/stream", produces = "text/event-stream") public Flux<String> chatStream(@RequestParam String message) { return miniMaxClient.chatFluxCompletion(message) .map(response -> response.getOutput().getContent()); }}
在上述代码中,chat 方法用于处
理普通的非流式请求,而 chatStream
方法则支持流式响应,能够实时返回 AI 的推理结果。