一、题目描述
树可以看成是一个连通且 无环 的 无向 图。
给定往一棵 n
个节点 (节点值 1~n
) 的树中添加一条边后的图。添加的边的两个顶点包含在 1
到 n
中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n
的二维数组 edges
,edges[i] = [ai, bi]
表示图中在 ai
和 bi
之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n
个节点的树。如果有多个答案,则返回数组 edges
中最后出现的那个。
示例 1:
输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]
示例 2:
输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
提示:
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
edges 中无重复元素
给定的图是连通的
二、解题思路
这道题目明显使用并查集会及其方便,并查集的有关知识点可以参考:并查集
并查集可以为每一个结点设置唯一的父亲结点,如果两个结点的父节点相同则表示这两个结点已经连通了。再加一条边,则会出现冗余连接,所以我们找到这个冗余连接的边即可。
这道题目另外一个提高时间效率的技巧就是使用路径压缩,使用路径压缩可以不用每次都一层层的往上面查找根节点,下面是没有用到路径压缩的代码:
int find(int parent[],int i){
if(i==parent[i]){
return i;
}else{
return find(parent,parent[i]