Q15

Q格式表示为:Qm.n,表示数据用m比特表示整数部分,n比特表示小数部分,共需要m+n+1位来表示这个数据,多余的一位用作符合位。假设小数点在n位的左边(从右向左数),从而确定小数的精度

例如Q15表示小数部分有15位,一个short型数据,占2个字节,最高位是符号位,后面15位是小数位,就假设小数点在第15位左边,表示的范围是:-1<X<0.9999695 。

浮点数据转化为Q15,将数据乘以2^15;Q15数据转化为浮点数据,将数据除以2^15

例如:假设数据存储空间为2个字节,0.333×2^15=10911=0x2A9F,0.333的所有运算就可以用0x2A9F表示,同理10911×2^(-15)=0.332977294921875,可以看出浮点数据通过Q格式转化后是有误差的。

 0.333*2^15=10911=0x2A9F,0.414*2^15=13565=0x34FD

  short a = 0x2A9F;

  short b = 0x34FD;

  short c = a * b >> 15;  // 两个Q15格式的数据相乘后为Q30格式数据,因此为了得到Q15的数据结果需要右移15位

这样c的结果是0x11A4=0001000110100100,这个数据同样是Q15格式的,它的小数点假设在第15位左边,即为0.001000110100100=0.1378173828125...和实际结果0.137862差距不大。或者0x11A4 / 2^15 = 0.1378173828125

Q格式的运算

  1> 定点加减法:须转换成相同的Q格式才能加减


  2> 定点乘法:不同Q格式的数据相乘,相当于Q值相加,即Q15数据乘以Q10数据后的结果是Q25格式的数据


  3> 定点除法:不同Q格式的数据相除,相当于Q值相减


  4> 定点左移:左移相当于Q值增加


  5> 定点右移:右移相当于Q减少



  实际应用中,浮点运算大都时候都是既有整数部分,也有小数部分的。所以要选择一个适当的定标格式才能更好的处理运算。一般用如下两种方法:


  1> 使用时使用适中的定标,既可以表示一定的整数复位也可以表示小数复位,如对于2812的32位系统,使用Q15格式,可表示-65536.0~65535.999969482区间内的数据。


  2> 全部采用小数,这样因为小数之间相乘永远是小数,永远不会溢出。取一个极限最大值(最好使用2的n次幂),转换成x/Max的小数(如果Max是取的2的 n次幂,就可以使用移位代替除法)。

<think>好的,用户想了解Q15格式在数字信号处理中的相关信息。首先,我需要明确Q15的基本定义。根据引用[1],Q格式是定点数的表示方法,其中Q后面的数字表示小数部分的位数。Q15应该是用16位二进制数,其中15位表示小数部分,1位符号位。也就是说,数值范围是-1到1-2^(-15),每个数的精度是2^(-15)。 接下来,用户可能想知道Q15应用场景。根据引用[3],Q15在嵌入式系统中常见,比如STM32处理器的q15格式舍入误差最高到2^-16,这说明它在资源受限的环境中很有用。需要提到它的优点,比如存储空间小、运算速度快,适合实时处理。 然后,数学表示也很重要。需要给出Q15的数学表达式,用LaTeX的独立公式格式,比如数值范围用$$...$$包裹。例如,数值范围是$$-1 \leq x < 1 - 2^{-15}$$,步长是$$2^{-15}$$。 还要注意运算中的注意事项,比如乘法的溢出问题。Q15相乘后需要右移15位来调整小数点位置,这可能导致溢出,所以可能需要更高位宽来存储中间结果。这点需要强调,避免用户使用时出错。 另外,引用[3]提到的误差问题也需要解释清楚。Q15的最大舍入误差是2^-16,这可能影响算法的精度,特别是在迭代次数较多时,误差会累积。需要提醒用户在设计算法时考虑这些误差,可能需要进行误差分析或选择更高精度的格式如Q31。 用户的问题可能还涉及到与其他格式的比较,比如Q31或者浮点数的区别。根据引用[1],Q格式不够灵活,但显式记号更清晰,所以需要明确Q15的结构是16位,其中15位小数,1位符号位。 最后,生成相关问题时,要涵盖Q15的定义、应用、运算、误差以及对比,这样用户可以有进一步的学习方向。需要确保问题具体且有引导性,帮助用户深入理解。</think>### Q15定点格式解析 Q15是数字信号处理中广泛使用的定点数表示格式,其核心特点为**16位二进制数中15位用于小数部分**,符号位隐含在最高位。以下从五个方面展开说明: #### 1. 数值范围与精度 - **数学表示**:$$x = (-1)^{b_{15}} \times \sum_{k=1}^{15} b_{15-k} \cdot 2^{-k}$$ - **取值范围**:$$-1 \leq x < 1 - 2^{-15}$$ - **最小步长**:$$2^{-15} \approx 3.0518 \times 10^{-5}$$ (每个数值单位对应十进制的最小变化量) #### 2. 存储结构 二进制布局示例: ``` S . F F F F F F F F F F F F F F F F ↑ ↑←───────── 15位小数部分 ─────────→↑ 符号位(bit15) ``` *注:S为符号位,F为小数位,采用二进制补码表示[^1]* #### 3. 运算特性(关键操作) | 运算类型 | 操作说明 | 注意事项 | |---------|---------|---------| | 加法 | 直接按位相加 | 可能溢出需范围检查 | | 乘法 | 结果需右移15位 | 产生32位中间结果[^3] | | 移位 | 保持数值比例 | 需处理符号扩展 | #### 4. 误差特性 - **量化误差**:$$\pm \frac{2^{-15}}{2} = \pm 1.5259 \times 10^{-5}$$ - **累积误差**:迭代运算中误差呈线性增长趋势 (参考STM32文档中最大剩余误差说明[^3]) #### 5. 应用场景 1. 嵌入式音频处理(如MP3解码) 2. 电机控制PWM信号生成 3. 传感器数据实时滤波 4. 低功耗IoT设备信号处理 ```c // ARM CMSIS-DSP库中的Q15乘法示例 q15_t a = 0x7FFF; // 最大正值0.999969482 q15_t b = 0x8000; // 最小负值-1.0 q15_t result; result = __QADD16(__SMUAD(a, b) >> 15, 0); // 饱和处理乘法 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值