行为识别论文笔记|TSM|TSM: Temporal Shift Module for Efficient Video Understanding

本文详述了Temporal Shift Module (TSM)在行为识别中的应用,它能以2D CNN的复杂度达到3D CNN的效果。TSM通过通道内的时间转移实现效率提升,对比了与其他方法如TSN、TRN、ECO和Non-local I3D + GCN的优缺点,并展示了在Something-Something-V1数据集上的优秀表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行为识别论文笔记|TSM|TSM: Temporal Shift Module for Efficient Video Understanding

Lin, Ji , C. Gan , and S. Han . “TSM: Temporal Shift Module for Efficient Video Understanding.” 2019 IEEE/CVF International Conference on Computer Vision (ICCV) IEEE, 2019.

Motivations

  1. Temporal Shift Module (TSM) can achieve the performance of 3D CNN but maintain 2D CNN’s complexity.

  2. Address shift, which is a hardware-friendly primitive, has also been exploited for compact 2D CNN design on image recognition tasks

    Chen, Weijie, et al. “All you need is a few shifts: Designing efficient convolutional neural networks for image classification.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

    Wu, Bichen, et al. “Shift: A zero flop, zero parameter alternative to spatial convolutions.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

    在这里插入图片描述

    He, Yihui, et al. “Addressnet: Shift-based primitives for efficient convolutional neural networks.” 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2019.

    在这里插入图片描述

Solutions

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值