行为识别论文笔记|TSM|TSM: Temporal Shift Module for Efficient Video Understanding
Lin, Ji , C. Gan , and S. Han . “TSM: Temporal Shift Module for Efficient Video Understanding.” 2019 IEEE/CVF International Conference on Computer Vision (ICCV) IEEE, 2019.
Contents
Motivations
-
Temporal Shift Module (TSM) can achieve the performance of 3D CNN but maintain 2D CNN’s complexity.
-
Address shift, which is a hardware-friendly primitive, has also been exploited for compact 2D CNN design on image recognition tasks
Chen, Weijie, et al. “All you need is a few shifts: Designing efficient convolutional neural networks for image classification.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Wu, Bichen, et al. “Shift: A zero flop, zero parameter alternative to spatial convolutions.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
He, Yihui, et al. “Addressnet: Shift-based primitives for efficient convolutional neural networks.” 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2019.