Python实现XMind测试用例快速转Excel用例

本文介绍了一个Python脚本,用于将XMind格式的测试用例快速转换为Excel格式,以适应不同的工作需求。脚本根据XMind的分支结构自动生成Excel表头,并详细解析了实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

XMind和Excel是在日常测试工作中最常用的两种用例编写形式,两者也有各自的优缺点。

使用XMind编写测试用例更有利于测试思路的梳理,以及更加便捷高效,用例评审效率更高,但是由于每个人使用XMind的方式不同,设计思路也不一样,可能就不便于其他人执行和维护。

使用Excel编写测试用例由于有固定的模板,所以可能更加形式化和规范化,更利于用例管理和维护,以及让其他人更容易执行用例,但是最大的缺点就是需要花费更多的时间成本。

由于项目需要,需要提供Excel形式的测试用例,同时编写两种形式的测试用例显然加大了工作量,于是写了个Python脚本,可快速将XMind用例转换成Excel用例。

设计思路

Excel测试用例模板样式如下图所示:

表头固定字段:序号、模块、功能点

为了让脚本更加灵活,后面的字段会根据XMind中每一个分支的长度自增,例如:测试点/用例标题、预期结果、实际结果、前置条件、操作步骤、优先级、编写人、执行人等

根据Excel模板编写对应的XMind测试用例:

实现:

将XMind中的每一条分支作为一条序号的用例,再将每个字段写入Excel中的每一个单元格中

再手动调整美化一下表格:

完整代码

# author: 测试蔡坨坨
# datetime: 2022/8/16 22:44
# function: XMind转Excel

from typing import List, Any
import xlwt
from xmindparser import xmind_to_dict


def resolve_path(dict_, lists, title):
    """
    通过递归取出每个主分支下的所有小分支并将其作为一个列表
    :
<think>好的,用户的问题是想用PythonXMind格式的测试用例换成Excel文件,需要工具或代码。首先,我需要回忆一下之前用户提供的引用内容,这些引用提到了使用xmindparser库解析XMind文件,然后用xlwt或pandas写入Excel,还可能涉及GUI和打包成exe。用户之前可能问过类似的问题,所以现在需要综合这些信息给出一个清晰的步骤和示代码。 首先,用户需要安装必要的库,比如xmindparser和xlwt。然后解析XMind文件,通常XMind文件的结构是树形的,需要递归遍历节点,提取内容。根据引用中的子,可能需要处理不同的层级,比如模块、子模块、用等级和名称,然后将这些信息按表格结构写入Excel如,引用3提到生成固定的表头,如序号、模块、功能点,其他自定义部分可能需要处理。引用4提到用等级的换,1为High,2为Middle,3为Low,用名称由节点组合而成。 需要注意的是,XMind的结构可能有不同的层级,用户需要确定自己的用格式,比如用等级在第几层,模块的层级如何划分。代码中可能需要处理这些层级,并将它们映射到Excel的列中。此外,处理过程中可能需要忽略某些节点,比如根节点或不需要的层级。 然后,写入Excel时,引用3和4都提到了使用xlwt库,创建Workbook和sheet,设置表头,然后循环写入数据。可能需要生成序号,处理不同的自定义字段,比如测试步骤、预期结果等,这些可能需要用户根据具体需求调整。 最后,是否需要打包成exe?用户的问题中没有提到,但引用1和2提到使用pyinstaller打包,可能用户后续有需要,但当前问题主要是换工具或代码,所以可能暂时不需要包含这部分,但可以提到如果需要的话可以使用pyinstaller打包。 可能的问题点包括XMind文件的结构解析是否正确,节点层级的处理是否准确,用名称的组合方式,以及Excel格式的正确生成。需要确保代码示足够清晰,用户能够根据示进行调整。 总结步骤应该是:安装库、解析XMind、处理数据、写入Excel。代码示需要涵盖这些步骤,同时处理用等级换和节点组合。此外,需要提示用户根据自己的XMind结构调整代码,比如层级深度和字段映射。</think>### Python实现XMindExcel测试用例的完整方案 根据引用内容[1][2][3][4],实现换的核心步骤如下: #### 一、环境准备 1. 安装必要库: ```bash pip install xmindparser xlwt pandas ``` #### 二、XMind文件解析(核心步骤) ```python from xmindparser import xmind_to_dict def parse_xmind(xmind_path): raw_data = xmind_to_dict(xmind_path)[0]['topic'] cases = [] # 递归解析节点(示处理3级结构) def parse_node(node, level=0, parent_path=[]): if 'topics' not in node: # 忽略空节点 return for child in node['topics']: current_path = parent_path + [child['title']] if level == 2: # 假设第3层是测试用例 case = { 'module': parent_path[0], # 一级模块 'sub_module': parent_path[1], # 二级模块 'case_name': '->'.join(current_path), 'priority': child['markers'][0] if child.get('markers') else '3' } cases.append(case) parse_node(child, level+1, current_path) parse_node(raw_data) return cases ``` *注:需根据实际XMind结构调整level判断逻辑[^4]* #### 三、Excel写入实现 ```python import xlwt def write_excel(data, output_path): wb = xlwt.Workbook() sheet = wb.add_sheet('测试用例') # 设置表头(固定+自定义) headers = ["序号", "模块", "子模块", "用名称", "优先级"] for col, header in enumerate(headers): sheet.write(0, col, header) # 优先级映射(引用内容[4]) priority_map = {'1': 'High', '2': 'Middle', '3': 'Low'} # 写入数据 for row, case in enumerate(data, 1): sheet.write(row, 0, row) # 序号 sheet.write(row, 1, case['module']) sheet.write(row, 2, case['sub_module']) sheet.write(row, 3, case['case_name']) sheet.write(row, 4, priority_map.get(case['priority'], 'Low')) wb.save(output_path) ``` #### 四、完整调用示 ```python if __name__ == "__main__": cases = parse_xmind("testcase.xmind") write_excel(cases, "output.xls") print(f"生成成功,共换{len(cases)}条用") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值