Python人工智能参——决策树

本文介绍了决策树作为机器学习的一种方法,详细讲解了ID3、C4.5和CART三种决策树生成算法,包括它们的工作原理和如何避免过度学习。通过实例展示了如何使用决策树来判断学生是否为好学生,并解释了熵、信息增益率和基尼指数在决策树构建过程中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、总结

一句话总结:
决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和CART等。决策树可以帮助我们解决分类与回归两类问题。

决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。


1、决策树实例:比如我要将学生分成好学生还是坏学生?
我们可以依据训练的决策树的模型,比如分数大于90分就是好学生,比如分数没大于90但是出勤高,也是好学生,以次类推


2、常见的决策树生成算法?
由 Quinlan 在 1986 年提出的 ID3 算法

由 Quinlan 在 1993 年提出的 C4.5 算法

由 Breiman 等人在 1984 年提出的 CART 算法

二、决策树
决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。

决策树是一种十分常用的分类方法,需要监管学习(有教师的Supervised Learning),监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。这里通过一个简单的例子来说明决策树的构成思路:

给出如下的一组数据,一共有十个样本(学生数量),每个样本有分数,出勤率,回答问题次数,作业提交率四个属性,最后判断这些学生是否是好学生。最后一列给出了人工分类结果。

然后用这一组附带分类结果的样本可以训练出多种多样的决策树,这里为了简化过程,我们假设决策树为二叉树,且类似于下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值