【AI技术】DH_Live训练日志

介绍

DH_live的训练遵循DINet的模型,用更高清的分辨率可以训练出更好的牙齿和唇形。再就是中文训练集以及更多的原始素材会训练出更好的效果。

训练步骤

数据集准备

数据集1

这份数据集是bilibili上的浪子之心科技大佬分享的,是1080*1440的高清人脸说话视频,很感谢这些自己花时间精力整理,还免费分享出来的大佬。

百度网盘:https://pan.baidu.com/s/1eS7BwxyIW9eDOvqOR4up_A?pwd=lzzx
提取码: lzzx
阿里云盘:https://www.alipan.com/s/GWwJq9BWf4C
提取码: rs34
夸克网盘:https://pan.quark.cn/s/fa763f4ee24a
提取码:w83E

数据集预处理

将数据集统一放到指定的一个目录中,类似官方给出的存放路径dir_to_data这个目录是在项目的目录下创建的
在这里插入图片描述

运行预处理命令:

python train/data_preparation_face.py dir_to_data

会生成训练使用的数据
在这里插入图片描述

验证

python train/train_input_validation_render_model.py dir_to_data

配置调整

项目目录下的talkingface/config/config.py文件下可以调整训练的参数,这里我们列举几个比较常用的

–batch_size:训练的批次大小
–decay:训练的轮数
–non_decay:固定学习率的迭代次数(不太清楚具体功能
实际的训练次数是decay+non_decay的次数
–checkpoint:训练多少轮进行一次模型的保存,这个文件会保存在checkpoint/Dinet_five_ref中
–seed:随机种子

开始训练

执行命令

python train/train_render_model.py --train_data 预处理的数据集目录
# 例子
python train/train_render_model.py --train_data dir_to_data

训练监听

执行命令

tensorboard --logdir=checkpoint/Dinet_five_ref

启动以后访问http://localhost:6006/可以看到训练情况。

继续训练

当我们训练终止想要继续上次的训练时,我们可以修改文件train/train_render_model.py文件中的一些内容
在这里插入图片描述
在这里插入图片描述

上面的路径和开始的轮数按照实际的进行修改。

模型转换

提供一个训练出来的模型提取预测模型的python

import torch
# 加载权重
checkpoint = torch.load('./checkpoint/epoch_100.pth ')
# 提取net_g的权重
net_g_static = checkpoint['state_dict']['net_g']
# 加载net_g权重
# net_g.load_state_dict(net_g_static)

# 保存新权重
torch.save(net_g_static, './checkpoint/render.pth')
print('以保存net_g权重到render.pth')

训练问题记录

2024.11.25

发现数据集中023有问题,最后几帧没有图像会导致训练中断。将视频做一下剪辑重新预处理一下。

特别感谢

bilibili的浪子之心科技提供的很多技术思路和数据集的分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值