深入解析 Stack 和 Queue:从原理到实战应用

一、栈(Stack)基础概念

是一种操作受限的线性数据结构,遵循后进先出(LIFO) 原则,只允许在栈顶进行插入和删除操作。

1.1 栈的核心特性

  • 基本操作

    • push(): 元素入栈(栈顶添加)
    • pop(): 元素出栈(栈顶移除)
    • peek(): 查看栈顶元素
    • isEmpty(): 判断栈是否为空
  • 现实类比

    • 子弹夹:最后压入的子弹最先射出
    • 书本堆叠:最后放的书最先取出
    • 函数调用栈:最近调用的函数最先返回
1.2 栈的底层实现

栈可通过两种方式实现:

// 数组实现(顺序栈)
class ArrayStack {
    private int[] data;
    private int top = -1; // 栈顶指针
    
    public void push(int val) {
        data[++top] = val;
    }
}

// 链表实现(链式栈)
class LinkedStack {
    static class Node {
        int val;
        Node next;
    }
    private Node top;
}

 

二、队列(Queue)基础概念

队列是一种操作受限的线性数据结构,遵循先进先出(FIFO) 原则,允许在队尾添加元素,在队头移除元素。

2.1 队列的核心特性

 

  • 基本操作

    • enqueue(): 元素入队(队尾添加)
    • dequeue(): 元素出队(队头移除)
    • front(): 获取队头元素
    • isEmpty(): 判断队列是否为空
  • 现实类比

    • 排队购票:先来的人先获得服务
    • 打印机队列:先提交的任务先打印
    • 消息队列:先发送的消息先被处理
2.2 队列的底层实现
// 数组实现(循环队列)
class CircularQueue {
    private int[] data;
    private int front = 0;
    private int rear = 0;
    
    public void enqueue(int val) {
        data[rear] = val;
        rear = (rear + 1) % data.length;
    }
}

// 链表实现(链式队列)
class LinkedQueue {
    static class Node {
        int val;
        Node next;
    }
    private Node head; // 队头
    private Node tail; // 队尾
}
三、Java 集合框架中的实现
3.1 Stack 类(不推荐使用)
Stack<Integer> stack = new Stack<>();
stack.push(1);
int top = stack.pop(); // 1

问题

  1. 继承自 Vector(线程安全但性能差)
  2. 方法同步导致效率低下
  3. 官方推荐使用 Deque 替代
3.2 Queue 接口实现
// 常用实现类
Queue<Integer> arrayQueue = new ArrayDeque<>(); // 数组实现
Queue<Integer> linkedQueue = new LinkedList<>(); // 链表实现

// 基本操作
queue.offer(1); // 入队(推荐)
queue.poll();   // 出队(推荐)
queue.peek();   // 查看队头
3.3 Deque 双端队列
Deque<Integer> deque = new ArrayDeque<>();
// 可作为栈使用
deque.push(1); // 入栈
deque.pop();   // 出栈

// 可作为队列使用
deque.offer(1); // 入队
deque.poll();   // 出队

// 双端操作
deque.offerFirst(1); // 队头入
deque.offerLast(2);  // 队尾入

ArrayDeque vs LinkedList

特性ArrayDequeLinkedList
底层结构可扩容循环数组双向链表
内存占用更紧凑每个元素额外24字节
随机访问O(1)O(n)
插入删除均摊O(1)O(1)
遍历性能CPU缓存友好缓存不友好
适用场景高频操作频繁插入删除
四、核心源码解析
4.1 ArrayDeque 扩容机制
// 简化版扩容源码
private void doubleCapacity() {
    int newCapacity = elements.length << 1; // 双倍扩容
    Object[] a = new Object[newCapacity];
    
    // 分两段拷贝数据
    System.arraycopy(elements, 0, a, 0, head);
    System.arraycopy(elements, head, a, head + capacity, capacity - head);
    
    elements = a;
    tail = head + capacity; // 重置尾指针
    capacity = newCapacity;
}

 4.2 ArrayDeque 循环索引计算

// 关键索引计算方法
final int inc(int i, int modulus) {
    return (++i >= modulus) ? 0 : i;
}

final int dec(int i, int modulus) {
    return (--i < 0) ? modulus - 1 : i;
}
4.3 LinkedList 队列操作
// 入队操作
public boolean offer(E e) {
    return add(e);
}

void linkLast(E e) {
    final Node<E> l = last;
    final Node<E> newNode = new Node<>(l, e, null);
    last = newNode;
    if (l == null)
        first = newNode;
    else
        l.next = newNode;
    size++;
}
五、栈的应用场景与实战
5.1 括号匹配(编译器基础)
public boolean isValid(String s) {
    Deque<Character> stack = new ArrayDeque<>();
    for (char c : s.toCharArray()) {
        if (c == '(') stack.push(')');
        else if (c == '[') stack.push(']');
        else if (c == '{') stack.push('}');
        else if (stack.isEmpty() || stack.pop() != c) 
            return false;
    }
    return stack.isEmpty();
}
5.2 逆波兰表达式计算
public int evalRPN(String[] tokens) {
    Deque<Integer> stack = new ArrayDeque<>();
    for (String token : tokens) {
        switch (token) {
            case "+": stack.push(stack.pop() + stack.pop()); break;
            case "*": stack.push(stack.pop() * stack.pop()); break;
            case "-": 
                int b = stack.pop(), a = stack.pop();
                stack.push(a - b); break;
            case "/": 
                b = stack.pop(); a = stack.pop();
                stack.push(a / b); break;
            default: stack.push(Integer.parseInt(token));
        }
    }
    return stack.pop();
}
5.3 浏览器前进后退
class Browser {
    private Deque<String> backStack = new ArrayDeque<>();
    private Deque<String> forwardStack = new ArrayDeque<>();
    private String current;
    
    public void visit(String url) {
        if (current != null) backStack.push(current);
        current = url;
        forwardStack.clear(); // 清空前进栈
    }
    
    public String back() {
        if (backStack.isEmpty()) return null;
        forwardStack.push(current);
        current = backStack.pop();
        return current;
    }
    
    public String forward() {
        if (forwardStack.isEmpty()) return null;
        backStack.push(current);
        current = forwardStack.pop();
        return current;
    }
}
六、队列的应用场景与实战
6.1 生产者-消费者模型
class MessageQueue {
    private final Queue<String> queue = new LinkedList<>();
    private final int maxSize;
    
    public MessageQueue(int maxSize) {
        this.maxSize = maxSize;
    }
    
    public synchronized void produce(String msg) throws InterruptedException {
        while (queue.size() == maxSize) {
            wait(); // 队列满时等待
        }
        queue.offer(msg);
        notifyAll(); // 唤醒消费者
    }
    
    public synchronized String consume() throws InterruptedException {
        while (queue.isEmpty()) {
            wait(); // 队列空时等待
        }
        String msg = queue.poll();
        notifyAll(); // 唤醒生产者
        return msg;
    }
}
6.2 二叉树的层序遍历
public List<List<Integer>> levelOrder(TreeNode root) {
    List<List<Integer>> result = new ArrayList<>();
    if (root == null) return result;
    
    Queue<TreeNode> queue = new LinkedList<>();
    queue.offer(root);
    
    while (!queue.isEmpty()) {
        int levelSize = queue.size();
        List<Integer> level = new ArrayList<>();
        
        for (int i = 0; i < levelSize; i++) {
            TreeNode node = queue.poll();
            level.add(node.val);
            if (node.left != null) queue.offer(node.left);
            if (node.right != null) queue.offer(node.right);
        }
        
        result.add(level);
    }
    return result;
}
6.3 请求速率限制器
class RateLimiter {
    private final Queue<Long> timestamps = new LinkedList<>();
    private final int maxRequests;
    private final long timeWindow; // 毫秒
    
    public RateLimiter(int maxRequests, long timeWindow) {
        this.maxRequests = maxRequests;
        this.timeWindow = timeWindow;
    }
    
    public synchronized boolean allowRequest() {
        long now = System.currentTimeMillis();
        // 移除超时请求
        while (!timestamps.isEmpty() && 
               now - timestamps.peek() > timeWindow) {
            timestamps.poll();
        }
        
        if (timestamps.size() < maxRequests) {
            timestamps.offer(now);
            return true;
        }
        return false;
    }
}
七、高级应用与经典算法
7.1 单调栈:下一个更大元素
public int[] nextGreaterElement(int[] nums) {
    int[] result = new int[nums.length];
    Arrays.fill(result, -1);
    Deque<Integer> stack = new ArrayDeque<>(); // 存储索引
    
    for (int i = 0; i < nums.length; i++) {
        while (!stack.isEmpty() && nums[i] > nums[stack.peek()]) {
            int idx = stack.pop();
            result[idx] = nums[i];
        }
        stack.push(i);
    }
    return result;
}
7.2 双队列实现栈
class QueueStack {
    private Queue<Integer> q1 = new LinkedList<>();
    private Queue<Integer> q2 = new LinkedList<>();
    
    public void push(int x) {
        q2.offer(x);
        while (!q1.isEmpty()) {
            q2.offer(q1.poll());
        }
        // 交换引用
        Queue<Integer> temp = q1;
        q1 = q2;
        q2 = temp;
    }
    
    public int pop() {
        return q1.poll();
    }
}
7.3 循环队列设计
class MyCircularQueue {
    private int[] data;
    private int head;
    private int tail;
    private int size;
    
    public MyCircularQueue(int k) {
        data = new int[k];
        head = 0;
        tail = -1;
        size = 0;
    }
    
    public boolean enQueue(int value) {
        if (isFull()) return false;
        tail = (tail + 1) % data.length;
        data[tail] = value;
        size++;
        return true;
    }
    
    public boolean deQueue() {
        if (isEmpty()) return false;
        head = (head + 1) % data.length;
        size--;
        return true;
    }
}
八、性能优化与最佳实践
8.1 栈和队列选择指南

8.2 性能优化技巧 

预分配空间:
 //预估10000个元素
Deque<Integer> stack = new ArrayDeque<>(10000);

避免装箱开销:
// 使用原始类型专有队列
IntQueue queue = new IntArrayDeque();

批量操作优化:
// 一次性添加多个元素
deque.addAll(Arrays.asList(1,2,3,4,5));

迭代器使用:
// 高效遍历(避免多次调用get())
for (Iterator<Integer> it = deque.iterator(); it.hasNext();) {
    System.out.println(it.next());
}
8.3 常见陷阱
Stack 类误用:
// 错误:使用继承自Vector的get方法
stack.get(0); // 违反栈原则


空队列操作:
// 未检查空队列
queue.remove();
 // 抛出NoSuchElementException


并发修改异常:
for (String s : queue) {
    queue.remove(); // 抛出ConcurrentModificationException
}

九、总结

  1. 是算法世界的"时间胶囊",保存最近状态
  2. 队列是系统设计的"缓冲带",协调异步操作
  3. 双端队列是灵活的多面手,融合两者优势
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值