一、栈(Stack)基础概念
栈是一种操作受限的线性数据结构,遵循后进先出(LIFO) 原则,只允许在栈顶进行插入和删除操作。
1.1 栈的核心特性
-
基本操作:
push()
: 元素入栈(栈顶添加)pop()
: 元素出栈(栈顶移除)peek()
: 查看栈顶元素isEmpty()
: 判断栈是否为空
-
现实类比:
- 子弹夹:最后压入的子弹最先射出
- 书本堆叠:最后放的书最先取出
- 函数调用栈:最近调用的函数最先返回
1.2 栈的底层实现
栈可通过两种方式实现:
// 数组实现(顺序栈)
class ArrayStack {
private int[] data;
private int top = -1; // 栈顶指针
public void push(int val) {
data[++top] = val;
}
}
// 链表实现(链式栈)
class LinkedStack {
static class Node {
int val;
Node next;
}
private Node top;
}
二、队列(Queue)基础概念
队列是一种操作受限的线性数据结构,遵循先进先出(FIFO) 原则,允许在队尾添加元素,在队头移除元素。
2.1 队列的核心特性
-
基本操作:
enqueue()
: 元素入队(队尾添加)dequeue()
: 元素出队(队头移除)front()
: 获取队头元素isEmpty()
: 判断队列是否为空
-
现实类比:
- 排队购票:先来的人先获得服务
- 打印机队列:先提交的任务先打印
- 消息队列:先发送的消息先被处理
2.2 队列的底层实现
// 数组实现(循环队列)
class CircularQueue {
private int[] data;
private int front = 0;
private int rear = 0;
public void enqueue(int val) {
data[rear] = val;
rear = (rear + 1) % data.length;
}
}
// 链表实现(链式队列)
class LinkedQueue {
static class Node {
int val;
Node next;
}
private Node head; // 队头
private Node tail; // 队尾
}
三、Java 集合框架中的实现
3.1 Stack 类(不推荐使用)
Stack<Integer> stack = new Stack<>();
stack.push(1);
int top = stack.pop(); // 1
问题:
- 继承自 Vector(线程安全但性能差)
- 方法同步导致效率低下
- 官方推荐使用 Deque 替代
3.2 Queue 接口实现
// 常用实现类
Queue<Integer> arrayQueue = new ArrayDeque<>(); // 数组实现
Queue<Integer> linkedQueue = new LinkedList<>(); // 链表实现
// 基本操作
queue.offer(1); // 入队(推荐)
queue.poll(); // 出队(推荐)
queue.peek(); // 查看队头
3.3 Deque 双端队列
Deque<Integer> deque = new ArrayDeque<>();
// 可作为栈使用
deque.push(1); // 入栈
deque.pop(); // 出栈
// 可作为队列使用
deque.offer(1); // 入队
deque.poll(); // 出队
// 双端操作
deque.offerFirst(1); // 队头入
deque.offerLast(2); // 队尾入
ArrayDeque vs LinkedList:
特性 | ArrayDeque | LinkedList |
---|---|---|
底层结构 | 可扩容循环数组 | 双向链表 |
内存占用 | 更紧凑 | 每个元素额外24字节 |
随机访问 | O(1) | O(n) |
插入删除 | 均摊O(1) | O(1) |
遍历性能 | CPU缓存友好 | 缓存不友好 |
适用场景 | 高频操作 | 频繁插入删除 |
四、核心源码解析
4.1 ArrayDeque 扩容机制
// 简化版扩容源码
private void doubleCapacity() {
int newCapacity = elements.length << 1; // 双倍扩容
Object[] a = new Object[newCapacity];
// 分两段拷贝数据
System.arraycopy(elements, 0, a, 0, head);
System.arraycopy(elements, head, a, head + capacity, capacity - head);
elements = a;
tail = head + capacity; // 重置尾指针
capacity = newCapacity;
}
4.2 ArrayDeque 循环索引计算
// 关键索引计算方法
final int inc(int i, int modulus) {
return (++i >= modulus) ? 0 : i;
}
final int dec(int i, int modulus) {
return (--i < 0) ? modulus - 1 : i;
}
4.3 LinkedList 队列操作
// 入队操作
public boolean offer(E e) {
return add(e);
}
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
}
五、栈的应用场景与实战
5.1 括号匹配(编译器基础)
public boolean isValid(String s) {
Deque<Character> stack = new ArrayDeque<>();
for (char c : s.toCharArray()) {
if (c == '(') stack.push(')');
else if (c == '[') stack.push(']');
else if (c == '{') stack.push('}');
else if (stack.isEmpty() || stack.pop() != c)
return false;
}
return stack.isEmpty();
}
5.2 逆波兰表达式计算
public int evalRPN(String[] tokens) {
Deque<Integer> stack = new ArrayDeque<>();
for (String token : tokens) {
switch (token) {
case "+": stack.push(stack.pop() + stack.pop()); break;
case "*": stack.push(stack.pop() * stack.pop()); break;
case "-":
int b = stack.pop(), a = stack.pop();
stack.push(a - b); break;
case "/":
b = stack.pop(); a = stack.pop();
stack.push(a / b); break;
default: stack.push(Integer.parseInt(token));
}
}
return stack.pop();
}
5.3 浏览器前进后退
class Browser {
private Deque<String> backStack = new ArrayDeque<>();
private Deque<String> forwardStack = new ArrayDeque<>();
private String current;
public void visit(String url) {
if (current != null) backStack.push(current);
current = url;
forwardStack.clear(); // 清空前进栈
}
public String back() {
if (backStack.isEmpty()) return null;
forwardStack.push(current);
current = backStack.pop();
return current;
}
public String forward() {
if (forwardStack.isEmpty()) return null;
backStack.push(current);
current = forwardStack.pop();
return current;
}
}
六、队列的应用场景与实战
6.1 生产者-消费者模型
class MessageQueue {
private final Queue<String> queue = new LinkedList<>();
private final int maxSize;
public MessageQueue(int maxSize) {
this.maxSize = maxSize;
}
public synchronized void produce(String msg) throws InterruptedException {
while (queue.size() == maxSize) {
wait(); // 队列满时等待
}
queue.offer(msg);
notifyAll(); // 唤醒消费者
}
public synchronized String consume() throws InterruptedException {
while (queue.isEmpty()) {
wait(); // 队列空时等待
}
String msg = queue.poll();
notifyAll(); // 唤醒生产者
return msg;
}
}
6.2 二叉树的层序遍历
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int levelSize = queue.size();
List<Integer> level = new ArrayList<>();
for (int i = 0; i < levelSize; i++) {
TreeNode node = queue.poll();
level.add(node.val);
if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
result.add(level);
}
return result;
}
6.3 请求速率限制器
class RateLimiter {
private final Queue<Long> timestamps = new LinkedList<>();
private final int maxRequests;
private final long timeWindow; // 毫秒
public RateLimiter(int maxRequests, long timeWindow) {
this.maxRequests = maxRequests;
this.timeWindow = timeWindow;
}
public synchronized boolean allowRequest() {
long now = System.currentTimeMillis();
// 移除超时请求
while (!timestamps.isEmpty() &&
now - timestamps.peek() > timeWindow) {
timestamps.poll();
}
if (timestamps.size() < maxRequests) {
timestamps.offer(now);
return true;
}
return false;
}
}
七、高级应用与经典算法
7.1 单调栈:下一个更大元素
public int[] nextGreaterElement(int[] nums) {
int[] result = new int[nums.length];
Arrays.fill(result, -1);
Deque<Integer> stack = new ArrayDeque<>(); // 存储索引
for (int i = 0; i < nums.length; i++) {
while (!stack.isEmpty() && nums[i] > nums[stack.peek()]) {
int idx = stack.pop();
result[idx] = nums[i];
}
stack.push(i);
}
return result;
}
7.2 双队列实现栈
class QueueStack {
private Queue<Integer> q1 = new LinkedList<>();
private Queue<Integer> q2 = new LinkedList<>();
public void push(int x) {
q2.offer(x);
while (!q1.isEmpty()) {
q2.offer(q1.poll());
}
// 交换引用
Queue<Integer> temp = q1;
q1 = q2;
q2 = temp;
}
public int pop() {
return q1.poll();
}
}
7.3 循环队列设计
class MyCircularQueue {
private int[] data;
private int head;
private int tail;
private int size;
public MyCircularQueue(int k) {
data = new int[k];
head = 0;
tail = -1;
size = 0;
}
public boolean enQueue(int value) {
if (isFull()) return false;
tail = (tail + 1) % data.length;
data[tail] = value;
size++;
return true;
}
public boolean deQueue() {
if (isEmpty()) return false;
head = (head + 1) % data.length;
size--;
return true;
}
}
八、性能优化与最佳实践
8.1 栈和队列选择指南
8.2 性能优化技巧
预分配空间:
//预估10000个元素
Deque<Integer> stack = new ArrayDeque<>(10000);
避免装箱开销:
// 使用原始类型专有队列
IntQueue queue = new IntArrayDeque();
批量操作优化:
// 一次性添加多个元素
deque.addAll(Arrays.asList(1,2,3,4,5));
迭代器使用:
// 高效遍历(避免多次调用get())
for (Iterator<Integer> it = deque.iterator(); it.hasNext();) {
System.out.println(it.next());
}
8.3 常见陷阱
Stack 类误用:
// 错误:使用继承自Vector的get方法
stack.get(0); // 违反栈原则
空队列操作:
// 未检查空队列
queue.remove();
// 抛出NoSuchElementException
并发修改异常:
for (String s : queue) {
queue.remove(); // 抛出ConcurrentModificationException
}
九、总结
- 栈是算法世界的"时间胶囊",保存最近状态
- 队列是系统设计的"缓冲带",协调异步操作
- 双端队列是灵活的多面手,融合两者优势