文章目录
一、Trie树(字典树)
AcWing 835. Trie字符串统计
Trie树是一种能够高效存储和查找字符串集合的数据结构
son[i][j]:i的范围为[0,N-1], j的范围[0,25]代表26个字母;
N为单个字符串最大长度;
const int N =100010; //单个字符串最大长度+10
//son[][]存储子节点的位置,分支最多26条;
//cnt[]存储以某节点结尾的字符串个数(同时也起标记作用)
//idx表示当前要插入的节点是第几个,每创建一个节点值+1
int son[N][26], cnt[N], idx;
char str[N];
void insert(char* str)
{
int p=0; //每次都要将p归0,让其从第一层开始插入,不让树太高;
for(int i=0;str[i];i++)
{
int u=str[i]-'a'; //将字母转化为数字
if(!son[p][u])
{
son[p][u]=++idx;///该字符节点不存在,创建节点
}
p=son[p][u]; //使“p指针”指向下一个节点
}
cnt[p]++; /结束时的标记,也是记录以此节点结束的字符串个数
}
int query(char *str)
{
int p=0; //从第一层开始插的,从第一层开始查;
for(int i=0;str[i];i++)
{
int u=str[i]-'a';
if(!son[p][u])
{
return 0;
}
p=son[p][u];
//printf("%c ",u+97); //大写u+65 小写u+97
}
//printf("\n");
return cnt[p];
}
二、并查集
详细教程
AcWing 836. 合并集合
AcWing 837. 联通块
并查集是有合并和查询功能的集合
合并功能就是把两个节点还有与两个节点有关系的节点连接起来,具体实现方法就是把两个点的祖先(注意不是父亲)连接在一起;查询功能就是查询两个节点有没有关系,具体实现方法就是查询两个节点祖先是否完全相同
路径压缩:每次查询find(x),就把自己的父亲fa[x]维护成最新查询到的find(fa[x]),集合(树)当前这条链的最大深度就为2,能极大节省时间。
运行样例
4 6
M 1 2 //合并1,2
M 3 4
Q 1 2 //查询1,2是否在同一个集合
Q 1 3
Q 3 4
N 1
答案
Yes
No
Yes
2
//如果x的父亲是自己说明自己就是祖先,不是就顺着自己父亲、父亲的父亲、……一直往下找直到找到
int find(int x) {
if (fa[x] == x) return x; //如果x的父亲是自己就说明已经到集合的头,也就是祖先了,返回
return find(fa[x]); //否则,递归查询x父亲的祖先(未压缩路径)
}
#include <bits/stdc++.h>
using namespace std;
int n, m, fa[100002], size[100002],a, b;
//int fa[x];为节点x的父亲 初始时,每个节点的父亲就是他自己
//size为联通块中节点数目,查询时先找根节点,size[find[x]]
char op;
int find(int x) {
if (fa[x] == x) return x;
return fa[x] = find(fa[x]); //压缩路径
}
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++ )
{
fa[i] = i;
size[i]=1; //一开始联通块节点数都为1 因为每个节点的父亲就是他自己
}
for (int i = 1; i <= m; i ++ ) {
cin >> op ;
if (op == 'M')
{
cin>>a>>b;
if(a==b) //同一个数不需要合并
{
continue;
}
size[find(b)]+=size[find(a)];
fa[find(a)] = find(b);
}
else if(op == 'N')
{
cin>>b;
cout << size[find(b)] << endl;
}
else
{
cin>>a>>b;
cout << (find(a) == find(b) ? "Yes" : "No") << endl;
}
}
}