聚焦模型超参数优化方法,提升模型性能,提供代码复现!(如需完整代码请评论或私信)
前言
论文题目:Ultra-Lightweight yet Efficient Hyperparameter Optimization in Deep Reinforcement Learning
作者:Mingqi Yuan1, Bo Li1, Xin Jin2,3,* Wenjun Zeng2,3
1Department of Computing, The Hong Kong Polytechnic University
2Ningbo Institute of Digital Twin, EIT, Ningbo
3Zhejiang Key Laboratory of Industrial Intelligence and Digital Twin, EIT, Ning
论文地址:https://arxiv.org/format/2503.06101
全文摘要
本文介绍了一种名为“ULTHO”的框架,用于在深度强化学习中快速进行超参数优化。传统的超参数优化方法无法满足深度强化学习的要求,因为它们效率低下且计算成本高。为了解决这个问题,作者提出了一个基于多臂赌博机和聚类的手法,并将其与长期回报优化直接联系起来。实验结果表明,该方法可以在不牺牲性能的情况下实现高效的超参数优化,从而促进先进和自动化的强化学习系统的发展。
论文方法
方法描述
本文提出的ULTHO框架是一个轻量级、统一且强大的HPO框架,旨在提高强化学习中的超参数优化效率和鲁棒性。该框架通过将MAB问题扩展为具有聚类臂的问题,实现了更高效的探索,并采用了分层搜索策略来组织和选择超参数候选集。此外,ULTHO还专注于优化长期回报,以确保可持续性能提升。
具体来说,ULTHO在单个训练运行中动态调整超参数,适应不同的学习阶段并显著减少试验和错误成本。它使用分层搜索策略来遍历搜索空间,而不是优先考虑短期改进。ULTHO不需要额外的学习过程或访问内部数据(如梯度),因此适用于各种强化学习算法。
方法改进
相比于之前的方法,ULTHO的主要改进在于其分层搜索策略和专注于优化长期回报的目标。这使得ULTHO能够更好地适应不同的学习阶段和环境,并提供更稳健的性能提升。此外,ULTHO还引入了Relay-ULTHO算法,进一步提高了探索完整性,从而获得了更多的性能提升。
解决的问题
ULTHO解决了强化学习中超参数优化的效率和鲁棒性问题。通过动态调整超参数和分层搜索策略,ULTHO能够在单个训练运行中适应不同的学习阶段和环境,并提供稳健的性能提升。同时,Relay-ULTHO算法进一步提高了探索完整性,从而获得更多的性能提升。这些改进使得ULTHO成为一种适用于各种强化学习算法的高效、通用的超参数优化框架。
论文实验
本文主要介绍了ULTHO算法在强化学习中的应用,并进行了多项对比实验来验证其性能和效果。具体来说,本文进行了以下五个方面的实验:
- 比较ULTHO与固定HP值的PPO算法在ALE benchmark上的表现;
- 比较ULTHO与多个HPO算法在ALE benchmark上的表现;
- 比较ULTHO与多个HPO算法在Procgen benchmark上的表现;
- 分析ULTHO算法的决策过程;
- 对ULTHO算法进行Ablation Study,分析其中两个关键参数对算法的影响。
下面将逐一介绍这些实验的具体内容和结果。
- 比较ULTHO与固定HP值的PPO算法在ALE benchmark上的表现
该实验比较了使用固定HP值的PPO算法和使用ULTHO算法的PPO算法在ALE benchmark上的表现。实验结果表明,ULTHO算法能够显著提高PPO算法的表现,在Q*Bert环境下的表现甚至比其他四个环境都要好。此外,ULTHO算法还能够在相同的训练预算下实现更高的回报率。
- 比较ULTHO与多个HPO算法在ALE benchmark上的表现
该实验比较了ULTHO算法与其他五种HPO算法(RS、PBT、PB2、SMAC、SAMC+HB)在ALE benchmark上的表现。实验结果表明,ULTHO算法在所有环境下都表现出色,尤其是在Q*Bert环境下的表现更是超过了其他四种算法。此外,ULTHO算法还能够在相同的训练预算下实现更高的回报率。
- 比较ULTHO与多个HPO算法在Procgen benchmark上的表现
该实验比较了ULTHO算法与其他三种HPO算法(PPO、SMAC、SAMC+HB)在Procgen benchmark上的表现。实验结果表明,ULTHO算法在大多数环境下都能够显著提高算法的表现,尤其在BigFish、Chaser和StarPilot等环境中表现更好。此外,ULTHO算法还能够在相同的训练预算下实现更高的回报率。
- 分析ULTHO算法的决策过程
该实验分析了ULTHO算法的决策过程,包括不同HP集群的选择比例以及各集群内部HP的选择情况。实验结果表明,ULTHO算法主要选择NUE集群,而其他三个集群的占比约为20%。在NUE集群内部,LR=5e-4、VLC=1.0、BS=2048和NUE=2是最受欢迎的选择。
- 对ULTHO算法进行Ablation Study,分析其中两个关键参数对算法的影响
该实验对ULTHO算法中使用的UCB方法进行了Ablation Study,分析了其中两个关键参数c和W对算法的影响。实验结果表明,ULTHO算法对于c和W的选择相对不敏感,但较大的W有助于更可靠地估计回报。因此,ULTHO算法具有较强的鲁棒性,可以适应各种不同的训练场景。
综上所述,本文通过多项对比实验证明了ULTHO算法在强化学习中的有效性,并对其决策过程和参数设置进行了深入分析。
论文总结
文章优点
本文提出了一种名为ULTHO的轻量级超参数优化框架,该框架将超参数优化过程视为一个带集群臂的多臂赌博机,并在不同的学习阶段中实现高效的自适应超参数选择。实验结果表明,ULTHO能够有效地增强深度强化学习算法的表现,从而促进先进和自动化的RL系统的发展。 此外,文章还介绍了当前存在的限制以及未来的研究方向,例如扩展ULTHO以处理连续超参数空间,探索其他赌博机算法等。
方法创新点
ULTHO通过将超参数优化过程视为带集群臂的多臂赌博机来提高效率和准确性。该框架不需要复杂的训练过程,而是使用UCB策略来平衡探索和利用。此外,ULTHO还可以应用于各种深度强化学习任务,包括游戏、机器人控制等领域。
未来展望
虽然ULTHO已经取得了显著的进展,但仍然存在一些局限性和未来研究的方向。例如,扩展ULTHO以处理连续超参数空间可以进一步提高其精度和灵活性。此外,探索其他赌博机算法也可以为深度强化学习的超参数优化提供更多的选择。总之,ULTHO是一个有前途的方法,可以为深度强化学习领域的超参数优化带来新的思路和解决方案。