BWFormer:基于Transformer的机载LiDAR点云建筑线框重建技术详解
引言
在城市数字化浪潮中,建筑线框重建扮演着关键角色。无论是智慧城市的规划、自动驾驶的感知系统,还是VR/AR的场景构建,精确的建筑结构模型都是不可或缺的基础。然而,传统方法在处理稀疏、噪声和不完整的机载LiDAR点云时面临巨大挑战。本文介绍的创新模型BWFormer,通过独特的2D-3D联合检测机制和边注意力机制,显著提升了重建的完整性和精度。
核心原理
1. 问题定义与挑战
机载LiDAR点云具有以下特点:
- 2.5D特性:俯视视角(BEV)无屋顶遮挡,适合平面重建
- 数据稀疏性:点密度不均(典型密度约500点/m²)
- 噪声干扰:植被穿透、传感器噪声导致异常点
- 细节丢失:烟囱等细小结构易被淹没
传统方法采用直接回归边或顶点的策略,但在稀疏点云中表现不佳。PBWR[9]虽然通过后处理提升效果,但缺乏端到端设计。
2. 数学建模
高度图投影:将点云