目录
1. 自适应层次化查询(Adaptive Hierarchical Query)
一、研究背景:少样本增量学习的挑战
在现实世界的AI应用中(如工业缺陷检测、医疗影像识别),模型需要不断学习新类别的知识,但新类别往往仅有少量标注样本。传统的增量学习方法面临两大难题:
- 灾难性遗忘:学习新类别时会覆盖旧类别的知识
- 过拟合风险:少量样本容易导致模型对噪声敏感
现有方法如L2P、DualP等基于提示的持续学习方法,通过固定骨干网络参数来缓解遗忘,但在少样本场景下存在以下缺陷:
- 未区分语义特征类型,导致稳定性-可塑性失衡
- 单一注意力机制无法有效分离判别性与非判别性特征
- 数据增强手段单一,难以生成多样化样本
二、SEC-Prompt核心原理
本文提出语义互补提示框架(SEC-Prompt),通过模仿人类选择性注意机制,将任务知识分解为判别性特征与非判别性特征进行协同学习。
1. 自适应层次化查询(Adaptive Hierarchical Query)
传统方法使用固定查询(如ViT的[class] token),而SEC-Prompt通过分层查询动态适应特征抽象层次:
qi+1(x)=Layeri([pi,hi])[0]
其中pi为第i层的提示,hi为输入特征,通过逐层传递实现特征抽象级别的动态适配。
2. 语义互补提示机制
(1)判别性提示(D-Prompt)
采用注意力机制增强关键判别特征:
αDj=∑keαDkeαDj
通过Softmax加权聚合提示,强化类内特征分离:
pD(x)=j=1∑MαDj⋅Pj
(2)非判别性提示(ND-Prompt)
使用反向注意力机制捕捉非判别特征:
αNDj=max(0,−γ(q(x)⊙ANDj,KNDj))
通过ReLU截断负权重,保留非判别信息:
pND(x)=j=1∑MαNDj⋅Pj
3. 训练策略创新
(1)判别性提示聚类损失
LPC(x,y)=2N1i=1∑Nj=1∑N(1−γ(pD(xi),pD(xj)))⋅I(yi=yj)
强制同类样本的判别特征对齐,减少噪声干扰。
(2)ND-Prompt数据增强
通过高斯扰动生成多样化样本:
α~ND=αND+N(0,1)
增加训练样本多样性,缓解过拟合。