【2025CVPR】SEC-Prompt:少样本增量学习中的语义互补提示模型详解

 

目录

一、研究背景:少样本增量学习的挑战

二、SEC-Prompt核心原理

1. 自适应层次化查询(Adaptive Hierarchical Query)

2. 语义互补提示机制

(1)判别性提示(D-Prompt)

(2)非判别性提示(ND-Prompt)

3. 训练策略创新

(1)判别性提示聚类损失

(2)ND-Prompt数据增强

三、模型架构图解

四、关键创新点

五、实验结果对比

1. ImageNet-R结果

2. CUB200结果

3. CIFAR100结果

六、代码实现要点

核心代码片段

训练流程

七、消融实验分析

八、总结与展望


一、研究背景:少样本增量学习的挑战

在现实世界的AI应用中(如工业缺陷检测、医疗影像识别),模型需要不断学习新类别的知识,但新类别往往仅有少量标注样本。传统的增量学习方法面临两大难题:

  1. 灾难性遗忘​:学习新类别时会覆盖旧类别的知识
  2. 过拟合风险​:少量样本容易导致模型对噪声敏感

现有方法如L2P、DualP等基于提示的持续学习方法,通过固定骨干网络参数来缓解遗忘,但在少样本场景下存在以下缺陷:

  • 未区分语义特征类型,导致稳定性-可塑性失衡
  • 单一注意力机制无法有效分离判别性与非判别性特征
  • 数据增强手段单一,难以生成多样化样本

二、SEC-Prompt核心原理

本文提出语义互补提示框架(SEC-Prompt)​,通过模仿人类选择性注意机制,将任务知识分解为判别性特征与非判别性特征进行协同学习。

1. 自适应层次化查询(Adaptive Hierarchical Query)

传统方法使用固定查询(如ViT的[class] token),而SEC-Prompt通过分层查询动态适应特征抽象层次:

qi+1​(x)=Layeri​([pi​,hi​])[0]

其中pi​为第i层的提示,hi​为输入特征,通过逐层传递实现特征抽象级别的动态适配。

2. 语义互补提示机制

(1)判别性提示(D-Prompt)

采用注意力机制增强关键判别特征:

αDj​=∑k​eαDk​eαDj​​

通过Softmax加权聚合提示,强化类内特征分离:

pD​(x)=j=1∑M​αDj​⋅Pj

(2)非判别性提示(ND-Prompt)

使用反向注意力机制捕捉非判别特征:

αNDj​=max(0,−γ(q(x)⊙ANDj​,KNDj​))

通过ReLU截断负权重,保留非判别信息:

pND​(x)=j=1∑M​αNDj​⋅Pj

3. 训练策略创新

(1)判别性提示聚类损失

LPC​(x,y)=2N1​i=1∑N​j=1∑N​(1−γ(pD​(xi​),pD​(xj​)))⋅I(yi​=yj​)

强制同类样本的判别特征对齐,减少噪声干扰。

(2)ND-Prompt数据增强

通过高斯扰动生成多样化样本:

α~ND​=αND​+N(0,1)

增加训练样本多样性,缓解过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值