[2025CVPR:图象合成、生成方向]WF-VAE:通过小波驱动的能量流增强视频 VAE 的潜在视频扩散模型

论文概述

这篇论文提出了一种名为WF-VAE(Wavelet Flow VAE)​的新型视频变分自编码器(Video VAE),旨在解决潜在视频扩散模型(LVDM)中的关键瓶颈问题,包括高计算成本和潜在空间不连续性。WF-VAE利用小波变换(Wavelet Transform)来分解视频信号,并通过能量流路径优化信息编码,显著提升了效率和重建质量。同时,论文引入了Causal Cache机制,支持无损的分块推理(block-wise inference),解决了长视频处理中的闪烁和失真问题。实验表明,WF-VAE在PSNR、LPIPS等指标上优于现有方法,同时将吞吐量提高2倍、内存消耗降低4倍。


背景与动机

视频变分自编码器(Video VAE)是LVDM的核心组件,用于将视频压缩到低维潜在空间,以降低扩散模型的训练成本。然而,随着视频分辨率和时长增加,现有VAE面临两大挑战:

  • 计算瓶颈​:现有方法(如OD-VAE、Allegro)使用密集3D卷积架构,导致高内存消耗和低吞吐量。例如,处理512×512分辨率视频时,基线模型内存占用可高达55GB,而编码速度慢至0.37秒/帧。
  • 潜在空间不连续​:分块推理策略(如Open-Sora和CogVideoX所用)会导致视频重叠区域的失真和闪烁,破坏潜在空间完整性。例如,分块推理使PSNR下降高达6.4。

这些问题源于现有VAE未能有效利用视频的时空冗余信息。因此,论文提

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值