[2025CVPR-图象生成方向]ODA-GAN:由弱监督学习辅助的正交解耦比对GAN 虚拟免疫组织化学染色

研究背景与挑战

  1. 临床需求

    • 组织学染色(如H&E和IHC)是病理诊断的核心技术,但IHC染色存在耗时、组织消耗大、图像未对齐等问题。
    • 虚拟染色技术可通过生成模型将H&E图像转换为IHC图像,但现有方法面临两大挑战:
      • 染色不真实性​:生成图像与真实IHC的分布存在差异。
      • 病理不一致性​:传统对比学习(如CUT方法)将相同染色标签的样本误判为负样本,导致染色信号错误。
  2. 现有方法局限

    • 监督方法(如Pix2Pix)依赖对齐的图像对,但实际中难以获取且存在内容差异。
    • 无监督方法(如CycleGAN)假设域间双射映射,不适用于染色任务;CUT类方法因样本划分矛盾导致染色错误。

方法创新:ODA-GAN框架

1. ​弱监督分割流程(WSSS)​
  • 目标​:生成H&E图像的抗原阳性区域掩码,替代专家标注。
  • 流程​(图2):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值