1 本文概述
1.1 模拟乘法器介绍
模拟乘法器是一种实现两个模拟量相乘的非线性电子器件,利用它可以方便地实现乘法、除法、乘方和开方运算电路。此外,由于它还能广泛地应用于广播电视、通信、仪表和自动控制系统中进行模拟信号的处理,所以发展很快,成为模拟集成电路的重要分支之一。
按照允许输入信号的极性,模拟乘法器有单象限、两象限和四象限之分。如图1.1所示。
单象限模拟乘法器只能处理输入信号和都为正的情况,其工作区域仅限于第一象限。
两象限模拟乘法器可以处理输入信号 为正或负,而仅为正或 为正或负,而 仅为正的情况,其工作区域为第一和第二象限,或第一和第四象限。
四象限模拟乘法器能够处理 和都为正或负的情况,其工作区域覆盖所有四个象限。四象限模拟乘法器的广泛应用使其在信号处理、调制、解调、幅度检测和自动控制等领域中得到了广泛的应用。
模拟乘法器主要有两种设计思路,分别是对数—反对数型乘法器与晶体管可变跨导型乘法器。
图 1.1.1 模拟乘法器输入信号的四个象限
Fig.1.1.1 Simulates the four quadrants of the multiplier input signal
模拟乘法器有两个输入端,一个输出端,输入及输出均对 “地” 而言,如图1.1.2所示。输入的两个模拟信号是互不相关的物理量,输出电压是它们的乘积,即
k 为乘积系数,也称乘积增益或标尺因子。
图 1.1.2 模拟乘法器符号及其等效电路
Fig.1.1.2 Analog multiplier symbols and their equivalent circuits
1.2 后文安排
本文在第二节中详细分析了模拟乘法器设计原理,主要有对数—反对数型乘法器与变跨导型乘法器并进行了仿真验证。
在第三节中分析了根据模拟乘法器搭建的除法运算电路与解调调制电路,对此进行了仿真验证。
在第四节中对全文进行了总结。
2 模拟乘法器设计原理与实现
2.1 对数—反对数型乘法器
对于单象限模拟乘除法器,我们可以通过组合指数运算电路、对数运算电路以及加法运算电路构成乘法运算电路,将加法电路调节为减法电路即可实现除法运算电路。下为具体的原理分析以及电路连接图。
由数学知识,易得:
lnx -lny = lnxy
lnx +lny = lnxy
ⅇlnxy = x∙y
ⅇlnxy = xy
所以我们只需将两个信号分别经过对数运算电路后相加或相减,然后再经过指数电路即可构建出乘除法运算电路。
下面简要介绍对数运算电路与指数电路。
图 2.1.1 对数运算电路模型
Fig.2.1.1 Logarithmic Arithmetic Circuit Model
如图为对数运算电路;在学习二极管时我们了解到二极管中PN结的导通电压与电流的关系为:
i = Is ∙ euuT-1
由于运放存在反馈回路,则有:
I+=I- ≈0
U+=U-=0
整理后可得:
Ube=UTlnUiRIs
Uo=-Ube=-UTlnUiRIs
图 2.1.2 指数运算电路模型
Fig.2.1.2 Exponential Arithmetic Circuit Model
如图为指数运算电路;同上可得:
i = Is ∙ euuT-1
I+=I- ≈0
U+=U-=0
Uo=-IfRf=-IsRfeUiUT
在上述分析的基础上我们对乘法运算电路进行推导:
图 2.1.3 指对乘法运算电路
Fig.2.1.3 Log-Antilog Multiplier Circuit
输入信号u1 与u2 经过加法电路后输出信号转化为
uad = UT∙lnu1∙u2R1∙R2∙Is2
uo= -R7R1∙R2∙Is∙u1∙u2
分析知,在计算中UT 被约去,无需考虑;我们只需要调节电路中的电阻R7 、R1 、R2,即可实现利用指数运算电路与对数运算电路构建出乘法运算电路。
同理,我们只需调整加法电路为减法电路即可实现除法运算电路,电路图为:
图 2.1.4 指对运算电路
Fig.2.1.4 Log-Antilog Divider Circuit
输入信号u1 与u2 经过减法电路后输出信号转化为
uad = UT∙lnu1∙R2R1∙u2
uo= -R7∙Is∙R2R1∙u1u2
分析知,在计算中UT 被约去,无需考虑;我们只需要调节电路中的电阻R7 、R1 、R2,即可实现利用指数运算电路与对数运算电路构建出除法运算电路。
在对上述电路进行仿真验证时,仿真结果与理论分析出现较大偏差:在指对乘法电路中,输出电压与两输入信号的乘积偏差极大,当二者乘积变为二倍时输出电压的变化极不明显,经过分析,由于PN结反向饱和电流极小,数量级在10-14左右,所以直接搭建出的仿真电路与理论分析出现极大误差;在指对除法电路中,输出信号始终处于饱和状态,无法实现除法功能。重新分析电路,可知在指数运算模块与对数运算模块中,输出信号的系数中存在PN结反向饱和电流Is ,其输出信号的幅度极小,无法实现电路功能。此外,对于图3、图4中的乘法电路与除法电路,由于采用三极管实现对数与指数运算功能、三极管的电气参数受温度影响较大,故整个电路的温度特性极差,难以在实际场景中使用。故我们采用温度补偿电路以减小其受到温度的影响,同时将对数与指数运算输出系数中的反向饱和电流IS消去,下面为详细的分析过程。
温度对仿真电路的影响主要体现在对PN结反向饱和电流的影响,故我们希望通过搭接温度补偿电路消去温度的干扰。下图为具有温度补偿电路的对数运算电路:
图 2.1.5 温度补偿型对数运算电路
Fig.2.1.5 Temperature-Compensated Logarithmic Operational Circuit
图五中A1、T1组成基本运算电路,A2、T2组成温度补偿电路,由上述分析分析可知,T1、T2管的集电极电流分别为(下式中的VR为+15V电压源):
ic1 = IES1 ∙ euBE1uT-1≈uiR2
ic2 = IES2 ∙ euBE2uT-1≈VRR1
ube1=UTlnic1IES1
ube2=UTlnic2IES2
如此我们即可确定出T2管的基极电位为:
UB1=-ube1+ube2≈-UT∙lnic1IES1-lnic2IES2
由于T2的基极电流极小,不妨将其忽略,则有:
UB1≈R6R4+R6∙uo
uo≈1+R4R6∙UB1≈-1+R4R6UT∙lnic1IES1∙IES2ic2
为消除温度对实验电路的影响,不妨选择T1、T2两管参数对称,即IES1 = IES2 ,则:
uo≈1+R4R6∙UB1≈-1+R4R6UT∙lnuiR2∙R1VR
如此,利用T1、T2两管特性的一致性即可将IES的影响消除。我们不妨选择R1=1.5MΩ,R2=100kΩ,R4=R6=1kΩ,则公式可转变为:
uo≈-2∙UT∙lnui
下图为具有温度补偿电路的指数运算电路:
图 2.1.6 温度补偿型指数运算电路
Fig.2.1.6 Temperature-Compensated Exponential Operational Circuit
图五中A3、T3组成基本运算电路,A4、T4组成温度补偿电路,由上述分析分析可知,T3、T4管的集电极电流分别为(下式中的VR为+15V电压源):
i3=VRR9≈IES3∙eUBE3UT
i4=UoR8≈IES4∙eUBE4UT
如此我们即可确定出Ua为:
Ua=-UBE3+UBE4
Ua=-UT∙lni4i3∙IES3IES4
为消除温度对实验电路的影响,不妨选择T1、T2两管参数对称,即IES1 = IES2 ,则:
Ua=-UT∙lni4i3=-UT∙lnuoVR∙R9R8
如此,利用T3、T4两管特性的一致性即可将IES的影响消除。我们不妨选择R9=1.5MΩ,R8=100kΩ,R4=R6=1kΩ,R13=R14=1kΩ,则公式可转变为:
Ua=-UT∙lni4i3=-UT∙lnuo
则输入信号与输出信号的关系为:
Ua=R13R13+R12∙ui
ui=-1+R12R13∙UT∙lnuo=-2∙UT∙lnuo
在此基础上我们只需要将两个温度补偿型对数运算电路的输出信号经加法器相加后送入温度补偿性指数电路,即可得到输出为两信号乘积的指对乘法电路,下图为完整电路图:
图 2.1.7 温度补偿型指对乘法运算电路
Fig.2.1.7 Temperature-Compensated Log-Antilog Divider Circuit
在此电路中我们所采用的是加法器与放大倍数为1的反向比例放大电路级联电路,如此即可保证中间级输出为两输入信号对数值之和吗,即:
uad≈-2∙UT∙lnui1∙ui2
则对于指数运算电路而言,存在:
uad≈-2∙UT∙lnui1∙ui2=-2∙UT∙lnuo
约去UT,即可得到:
uo=ui1∙ui2
下面为我们仿真结果:
图 2.1.8 仿真结果(1)
Fig.2.1.8 Simulation Results(1)
图 2.1.9 仿真结果(2)
Fig.2.1.9 Simulation Results(2)
经过多组仿真测试,我们可以观察到当两输入信号的幅值较小(1V左右时),指对乘法电路的输出值与理论值的误差较小,在5%以内,但是当输入信号幅值增大时电路的误差逐渐增大:当输入信号均为2V时电路的误差可达到20%,难以满足使用条件;并且对于乘法电路而言,由于采用对数运算电路,所以两输入值均需大于0,即仅可在第一象限内进行乘法运算,并且电路中使用较多运放,难以集成为模拟乘法器芯片,电路的规模较大;所以,我们需要考虑其它类型的乘法电路。
2.2 变跨导型乘法器
变跨导型模拟乘法器利用输入电压控制差分放大电路差分管的发射极电流,使之跨导作相应的变化,从而达到与输入差模信号相乘的目的。
下面对变跨导型乘法器进行分析。
2.2.1 两象限变跨导型模拟乘法器
在分析电路前,需要对PN结方程进行分析,得出晶体管跨导的近似计算表达式。
晶体管发射结电压与射极电流之间的关系为:
整理跨导得:
如下图2.2.1.1所示,下面开始分析差分放大电路的差模传输特性:
差分放大电路的差分传输特性是指在差模信号作用下,输出电压与输入电压的函数关系。
|
图 2.2.1.1 差分放大电路及其差模传输特性
Fig. 2.2.1.1 Differential amplification circuits and their differential-mode transmission characteristics
在图2.2.1.1(a)所示差分放大电路中,为差模输入电压,
恒流源电流:
因此,T2管的发射级电流:
同理,T1管电流:
由于:
其中,为双曲正切函数,因此:
当时,有:
输出电压:
因而电路的差模电压传输特性如图2.2.1.1(b)所示。
在图2.2.1.2所示差分放大电路中,
代入式可得:
若,则
|
图 2.2.1.2 两象限模拟乘法器
Fig.2.2.1.2 Two-quadrant analog multiplier
对于这个电路,我们进行了仿真,仿真电路图与结果如下:
图 2.2.1.3 两象限模拟乘法器仿真图
Fig.2.2.1.3 Two-quadrant simulation multiplier diagram
在仿真中,我们发现电压取值范围比较小,在以内,这是因为需满足。同时电压范围在以内,这是因为需要满足三极管T3导通。
仿真中,预计结果为
但实际结果为,这是因为电压较小,,不满足,因此使用公式,可以计算得到:
结果较为相近,且由于过小,因此误差较大,因此可以认为仿真结果合理。
由于两象限变跨导型模拟乘法器使用时限制较大,在实际中多采用四象限变跨导型模拟乘法器。因此我们将对四象限变跨导型模拟乘法器进行分析。
2.3 四象限变跨导型模拟乘法器
图2.3.1所示为双平衡四象限变跨导型模拟乘法器,通过对图2.2.1.1 所示电路的分析,得到的式(1) 适用于图2.3.1所示电路。
iC1-iC2≈iE1-iE2=I0thuX2UT (1)
当ux<<2UT(约为2*26mV)时,有:
iC1-iC2≈I0uX2UT=gmuX
输出电压:
u0=-iC1-iC2Rc≈-I0uXUT⋅Rc=-gmRcuX
图 2.3.1 四象限模拟乘法器
Fig.2.3.1 Four-quadrant analog multiplier
i1-i2≈i5thux2UT (2)
i4-i3≈i6thux2UT (3)
i5-i6≈IthuY2Ur (4)
i01-i02=(i1+i3)-(i4+i2)=(i1-i2)-(i4-i3)
将式(2)(3)(4)带入上式,得:
i01-i02≈(i5-i6)thuX2UT≈IthuY2UTthuX2UT
当ux<<2UT且uY<<2UT,i01-i02≈I4UT2⋅uXuY
所以,输出电压uO=-(iO1-iO2)Rc≈-I4UT2RcuXuY=kuXuY
由于𝑢𝑥 和𝑢𝑦均可正可负,故图2.3.1所示电路为四象限模拟乘法器。它是双端输出形式,可利用图2.3.2所示的集成运算电路,将其转换成单端输出形式。
图 2.3.2 双端输入单端输出电路
Fig.2.3.2 Dual-input single-output circuit
变跨导型模拟乘法器通过控制跨导来实现模拟量相乘,其关键在于合理设计差分放大电路和恒流源,确保电路在所需的象限范围内工作,并尽量减小运算误差。我仿真时采用了理想NPN型的三极管,恒流源电流选择2mA,供电电压选择12V,Rc电阻选择3kΩ,k=-2mA*3kΩ/(4*26mV*26mV)=-2218.93
补充阐述恒流源电流的选择依据:选择1mA至2mA,需考虑权衡跨导、功耗和线性度,较高电流(如2mA)可提升跨导,但会增加功耗,为了确保晶体管工作在线性区,不选择过大的电流。
2.3.1 直流乘直流仿真电路图:
ux为交流信号,uy为直流信号,输出为ux按uy比例放大(增益可调)。
图 2.3.1.1 四象限模拟乘法器仿真图1
Fig.2.3.1.1 Simulation diagram of four-quadrant analog multiplier 1
图 2.3.1.2 四象限模拟乘法器仿真图2
Fig.2.3.1.2 Simulation diagram of four-quadrant analog multiplier 2
图 2.3.1.3 四象限模拟乘法器仿真图3
Fig.2.3.1.3 Simulation diagram of four-quadrant analog multiplier 3
图 2.3.1.4 四象限模拟乘法器仿真图4
Fig.2.3.1.4 Simulation diagram of four-quadrant analog multiplier 4
2.3.2 直流乘交流仿真电路图:
图 2.3.2.1 四象限模拟乘法器仿真图5
Fig.2.3.2.1 Simulation diagram of four-quadrant analog multiplier 5
2.3.3 交流乘交流仿真电路图:
ux和uy均为交流信号,乘法器输出为两者的乘积,包含和频与差频分量
图 2.3.3.1 四象限模拟乘法器仿真图6
Fig.2.3.3.1 Simulation diagram of four-quadrant analog multiplier 6
2.3.4 四象限调制仿真电路:
V1的直流偏置为2mV,交流信号幅度为1mV,频率为1kHz;
V2的直流偏置为0,交流信号幅度为1mV,频率为10kHz。
仿真电路如图2.3.4.1所示:
图 2.3.4.1 四象限模拟乘法器调制电路
Fig.2.3.4.1 Four-quadrant analog multiplier modulation circuit
2.3.5 双平衡四象限乘法器的特点总结:
四象限工作:
输入ux和uy均可为正、负或零,输出覆盖四个象限(正×正、正×负、负×正、负×负),因此支持交流信号的全波处理。
跨导型结构:
输入信号通过压控跨导(gm)实现乘法,对输入信号的频率响应与晶体管带宽相关,高频时需考虑寄生电容影响。
3 模拟乘法器的运用
模拟乘法器除了自身能够实现两个模拟信号的乘法运算外,还可以和其它电路相配合构成除法、开方、均方根等运算电路。同时,由于乘法电路在信号的调幅上有重要作用,这里对这一过程进行仿真。
3.1 乘方运算电路
利用四象限模拟乘法器能够实现四象限平方运算电路,如图3.1.1所示。
图 3.1.1 乘方运算电路
Fig.3.1.1 Exponentiation Circuit
输出电压:uO=kuI2
当uI为正弦波且uI=2Uisinωt时,则:uO=2kUi2sin2ωt=kUi2(1-cos2ωt)
以下是仿真电路:
图 3.1.2 乘方运算电路输入输出波形
Fig.3.1.2 Exponentiation operation circuit input and output waveforms
理论上可以用多个模拟乘法器串联组成任意次幂的运算电路,如图3.1.3,3.1.4所示的3次方,4次方运算电
路,它们的表达式分别为:uO1=k2uI3 uO2=k2uI4
图 3.1.3 3次方运算电路
Fig.3.1.3 Third power operation circuit
图 3.1.4 4次方运算电路
Fig.3.1.4 Fourth power operation circuit
3.2 开方运算电路
利用乘方运算电路作为集成运放的负反馈通路,就可构成开放运算电路。在除法运算电路基础上,令uI2=uO,就构成平方根运算电路,如图3.2.1所示:
图3.2.1 平方根运算电路
Fig.3.2.1 Square root operation circuit
若电路引入的是负反馈,则由虚断虚断可知,uN=uP=0,i1=i2
,即:-uIR1=uO'R2
uO'=-R2R1⋅uI=kuO2 ,故:|uO|=-R2uIkR1
,为了使根号下为正数,uI
与k必须符号相反。因此,由于uo与uI
极性相反,故当uI>0、k<0
时运算关系应为:uO=--R2uIkR1(1)
,当u I<0、k>0
时运算关系应为uO=-R2uIkR1(2)
,与除法运算电路相同,因为当模拟乘法器选定后 k 的极性就唯一地被确定,因此实际电路的运算关系式只可能是式(1),(2)中的一个。
仿真电路如下:
图3.2.2 平方根运算电路
Fig.3.2.2 Square root operation circuit
在图3.2.1中,若uI<0、k>0,则图中所标注的电流方向是在上述条件下电流的实际方向。如果因某种原因使uI
大于零,则必然导致uO'
大于零,从而使反馈极性变正,最终使集成运放电路内部的晶体管工作到截止区或饱和区,输出电压接近电源电压,以至于即使uI
变得小于零,集成运放也不能回到线性区,电路不能恢复正常工作,运放出现闭锁或称锁定现象。为了防止闭锁现象的出现,实用电路中常在输出回路串联一个二极管,如图3.2.3所示:
图3.2.3 改进后的平方根运算电路
Fig.3.2.3 The improved square root operation circuit
3.3 除法运算电路
利用反函数型运算电路的基本原理,将模拟乘法器放在集成运放的反馈通路中,便可构成除法运算电路,如图3.3.1所示。与只用集成运放组成的运算电路一样,在用模拟乘法器和集成运放共同构成运算电路时,也必须引入负反馈,据此可确定二者的连接方法。
|
图 3.3.1 除法运算电路
Fig.3.3.1 Circuits for division operations
下面分析推导图3.3.1所示除法运算电路的输出与输入之间的表达式。利用运放在线性工作状态时的“虚短”“虚断"和“虚地”特征,有
即有:
整理得:
图3.3.1中乘法器输出:
整理式(17)和式(18)得输出电压:
对于此除法运算电路,我们也进行了仿真。仿真电路图与结果如下::
图 3.3.2 除法运算电路仿真图
Fig.3.3.2 Circuit simulation diagram of division operation
可以分析知: ,仿真结果合理。
3.4 调幅与二极管包络检波解调电路
我们对将1kHz的信号加载到300kHz的载波信号上进行传输。通过一个二极管包络检波电路进行解调。仿真实验电路图与结果图如下:
图 3.4.1 调幅与二极管包络检波解调电路仿真图
Fig.3.4.1 Simulation diagram of amplitude modulation and diode envelope detection and demodulation circuit
由实验结果可以得知,由于二极管存在导通压降,检波电路能够得出所求出的包络线会存在压降,但仍然能够较好地滤除高频分量,得到传输信号。
4 结论
1) 多象限模拟乘法器设计的优化与实现:通过对单象限、两象限及四象限模拟乘法器的系统研究,提出了针对单象限乘法器的温度补偿方案,利用对数-指数转换原理有效抑制了温度对运算精度的影响;设计的两象限乘法器实现了单极性信号的高精度乘法运算,而四象限变跨导型乘法器通过双平衡差分结构实现了双极性信号的宽范围处理,覆盖全部四个象限。仿真验证表明,四象限乘法器在输入信号幅值较小时误差低于5%,而在输入信号幅值较大时误差较大。
2) 乘除运算电路应用扩展:基于模拟乘法器,构建了平方、平方根、除法、及调制解调电路。除法电路通过反馈网络实现了动态电压比值计算,误差可控在理论值的3%以内;平方根电路通过引入二极管限幅有效避免了运放闭锁现象。在通信应用中,四象限乘法器构建的平衡调制电路能够实现1kHz信号在300kHz载波上的调幅,结合二极管包络检波电路可有效恢复原始信号,验证了其在通信系统中的实用性。
3) 局限性与未来方向:当前对数-反对数型乘法器受限于PN结参数,输入范围较小,变跨导型乘法器的高频性能受晶体管带宽制约。未来可探索基于CMOS工艺的跨导线性环乘法器以扩展线性范围,或采用高频特性更优的器件提升调制电路的工作频段。此外,集成化设计可进一步降低温度漂移并提高电路紧凑性,为复杂模拟信号处理系统提供可靠基础模块。
5 致谢
1) 魏浩文:书写本文摘要、参考文献,单象限模拟乘法器原理与仿真设计;
2) 吴文鹏:书写本文概述,两象限模拟乘法器的原理与仿真设计,模拟乘法器应用中除法电路设
计与仿真,调制解调电路仿真;
3) 倪若辰:书写本文四象限模拟乘法器原理与仿真设计及调制电路的应用仿真,模拟乘法器应用
中乘方、平方根电路设计与仿真,总结的撰写。
参考文献(References):
- 陆勇.模拟集成电路基础[M].北京:中国铁道出版社有限公司,2022:194-203.
LU Yong. Fundamentals of Analog Integrated Circuits [M]. Beijing:China Railway Publishing House Co., Ltd.,2022:194-203.
- 刘颖.模拟电子技术基础[M].北京:高等教育出版社,2021:319-342.
LIU Ying. Nonlinear control systems[M]. Beijing:Fundamentals of Analog Electronics,2021:319-342.
- passxgx.模拟乘法器及其在运算电路中的应用 [EB/OL]. (2023-4-16)[2025-05-23]. https://blog.csdn.net/passxgx/article/details/130174632.
passxgx.Analog Multiplier and Its Applications in Operational Circuits [EB/OL].(2023-4-16)[2025-05-23]. https://blog.csdn.net/passxgx/article/details/130174632.
作者简介:
吴文鹏1 ,魏浩文2 ,倪若辰3
(1.北京交通大学 电子信息工程学院 23211082,北京,100044
2.北京交通大学 电子信息工程学院 23291057,北京,100044
3.北京交通大学 电子信息工程学院 23291311,北京,100044)
Wu Wenpeng 1,Wei Haowen 2, Ni Ruochen3