1.冒泡排序
比较相邻的元素。如果第一个比第二个大,就交换他们两个。对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个,即需要进行length-1次。
第一次是对n个数进行n-1次比较,进行到最后第n个的一个是最大的;
第二次是对n-1个数进行n-2次比较,进行到最后第n-1个的一个是最大的;
…
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
/**
* 冒泡排序,时间复杂度最高O(n²),最佳时间复杂度是O(n)
*/
for (int i = 0; i < arr.length-1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
改进版冒泡排序:
在冒泡排序中,各元素不断解决自己的位置,如果一趟比较下来,没有元素进行位置互换,则说明有序。利用flag判断元素是否进行过交换,flag=false 说明交换过。
/**
* 冒泡排序,时间复杂度最高O(n²),最佳时间复杂度是O(n)
*/
int[] arr = {
12, 56, 3, 78, 39};
boolean flag=false;
for (int i = 0; i < arr.length-1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
flag=true;
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
if(!flag){
break;
}else {
flag=false;
}
}
复杂度分析:
以下是冒泡排序算法复杂度:
平均时间复杂度 | 最好情况 | 最坏情况 | 空间复杂度 |
---|---|---|---|
O(n²) | O(n) | O(n²) | O(1) |
冒泡排序是最容易实现的排序, 最坏的情况是每次都需要交换, 共需遍历并交换将近n²/2次, 时间复杂度为O(n²). 最佳的情况是内循环遍历一次后发现排序是对的, 因此退出循环, 时间复杂度为O(n). 平均来讲, 时间复杂度为O(n²). 由于冒泡排序中只有缓存的temp变量需要内存空间, 因此空间复杂度为常量O(1).
2.选择排序
基本思想:
选择排序的思路很简单,它的基本思路是:首先在序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对 n个元素的表进行排序总共进行至多 n-1 次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。
算法描述:
- 从序列中找到关键字最小的元素
- 如果最小元素不是序列的第一个元素,将其和序列第一个元素互换
- 重复1、2步,直到排序结束。
代码实现:
/*
分为两步:第一步找最小
第二步交换位置
*/
public static void selection_sort(int[] a) {
for(int i=0; i < a.length; i++){
//从第i个元素开始找最小值,先设置最小值为第i个元素值,min代表的是位置而不是值。
int min = i;
//从第i+1到最后一个元素中依次比较第i个值是否为最小值
for(int j = i + 1; j < a.length; j++){
if(a[j] < a[min]){
min=j;
}
}
//交换位置:最小值不等于当前值时进行交换
if(min != i){
int temp = a[i];
a[i] = a[min];
a[min] = temp;
}
}
}
复杂度分析:
以下是选择排序复杂度:
平均时间复杂度 | 最好情况 | 最坏情况 | 空间复杂度 |
---|---|---|---|
O(n²) | O(n²) | O(n²) | O(1) |
总结与思考
选择排序的简单和直观名副其实,这也造就了它”出了名的慢性子”,无论是哪种情况,哪怕原数组已排序完成,它也将花费将近n²/2次遍历来确认一遍。即便是这样,它的排序结果也还是不稳定的。 唯一值得高兴的是,它并不耗费额外的内存空间。
3.插入排序
基本思想:
把n个待排序的元素看成一个有序表和一个无序表,开始时有序表只包含一个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出一个元素,把它的排序码与有序表元素的排序码进行比较,将它插入到有序表的适当位置,成为新的有序表。
通常人们整理桥牌的方法是一张一张的来,将每一张牌插入到其他已经有序的牌中的适当位置。在计算机的实现中,为了要给插入的元素腾出空间,我们需要将其余所有元素在插入之前都向右移动一位。
算法描述:
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序
- 取出下一个元素,在已经排序的元素序列中从后向前扫描
- 如果该元素(已排序)大于新元素,将该元素移到下一位置
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
- 将新元素插入到该位置后
- 重复步骤2~5