计算机视觉-对极几何

1 基本概念

对极几何(Epipolar Geometry)描述的是两幅视图之间的内在射影关系,与外部场景无关,只依赖于摄像机内参数和这两幅视图之间的相对位姿

两视图的对极几何可以理解为图像平面与以基线为轴的平面束相交的几何关系,其中主要有几种概念:

  • 基线(base line):两个相机中心的连线CC'称为基线
  • 对极点(epipolar):ee'是对极点,是基线与两个成像平面的交点,也就是两个相机在另一个成像平面上的像点
  • 对极平面(epipolar plane):过基线的平面都称之为对极平面,其中两个相机的中心C和C',三维点X,以及三维点在两个相机成像点xx'这五点必定在同一对极平面上,当三维点X变化时,对极平面绕着基线旋转,形成对极平面束
  • 对极线(epipolar line):是对极平面和成像平面的交线,所有的对极线都相交于极点

2 基础矩阵和本质矩阵的推导

那么由对极几何的基本性质引出了对极约束的概念,对极约束是指在平面2上的p点在平面1上的对应点一定在基线I'上,这句话说明了对极约束是一个点到直线的射影映射关系。如图所示

根据对极约束可以引出本质矩阵和基础矩阵。在已知相机标定的情况下,假设有一个三维坐标点P(X,Y,Z)在两个视图上的点分别为p1,p2,由于第一个相机的中心作为世界坐标系的原点,也就是说第一个相机没有旋转R和平移t,通过小孔相机模型有:

p1=KP, p2=K(RP+t)

其中,K是相机的内参,R,t是第二个相机相对于第一个相机的旋转和平移。

p_1=KP

P=K^{-1} p_1

带入上面式子中:

p_2=K(R K^{-1}p_1+t)

两边同时乘以K^{-1}得到:

K^{-1}p_2=RK^{-1}p_1+t

为了简化,规定:

x_1=K^{-1}p_1

x_2=K^{-1}p_2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值