推荐系统之TF-IDF算法实现

推荐系统之TF-IDF算法实现

词频-逆文档频率(TF-IDF)是一种用于资讯检索与文本挖掘的常加权技术。该技术是一种统计方法,用以评估一个字词对于一个文件集或一个语料库中一个文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

如下公式:TF是字词在文件中出现的频率,即词频;IDF是字词在语料库中出现的频率,即逆文档频率。

在这里插入图片描述
下面我们看一下词频TF的计算公式,分子表示i在j中出现的次数,分母表示文档j的总词数。
在这里插入图片描述
我们再看一下逆向文件频率的公式,其中N表示文档集中文档总数,Ni表示文档集中包含词i的文档数,加1的目的方式分子或者分母为0.
在这里插入图片描述

代码如下:
我们给出两句话:docA = 'The cat sat on my bed' docB = 'The dog sat on my knees',分别求这两句话的词频-逆文档频率TF-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuist__NJUPT

给个鼓励吧,谢谢你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值