备战数学建模28 & 科研必备 Python之数据处理神器pandas

这篇博客介绍了Pandas库的基础用法,包括Series和DataFrame的创建与操作。通过实例展示了读取外部数据、数据合并、分组聚合、统计方法、字符串离散化等核心功能。还探讨了如何进行数据排序、缺失值处理、布尔索引以及数据可视化,如绘制直方图和条形图。最后,文章以实际案例分析了如何统计不同年份书籍的数量和平均评分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1-series和读取外部数据

2-pandas的DataFrame

3-统计方法和字符串离散化

4-数据的合并和分组聚合


1-series和读取外部数据

我们知道在python在使用numpy可以处理数值型数据,但是这是远远不够的,因为除了数值数据之外,还有字符串,时间序列等等,所以我们需要使用pandas进行处理;

pandas中常用数据类型:Series一维,带标签的数组;DataFrame二维,Series容器;

python代码如下:

import pandas as pd

t = pd.Series([1,2,31,12,3,4])
print(t)
print(type(t))
print("*" * 100)

#pandas生成一维带标签数组,并设置标签
t2 = pd.Series([1,23,2,2,1], index=list("abcde"))
print(t2)
print("*" * 100)

#pandas通过字典的方式创建Series数组
temp_dict = {"name":"xiaoming", "age":13, "tel":10086}
t3 = pd.Series(temp_dict)
print(t3)
print(t3[0]) #通过索引取值
print(t3["name"]) #通过键取值
print(t3[1:]) #取得连续的行
print(t3[[0,2]]) #取不连续的行
print(t3.index) #找到
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuist__NJUPT

给个鼓励吧,谢谢你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值