备战数学建模32-相关性分析2

目录

一、皮尔逊相关系数

二、斯皮尔曼相关系数

三、典型相关分析

1-定义及具体步骤

 2-典型相关分析的案例1

3-典型相关分析的案例2


本节重点学习两种相关性分析,pearson和spearman,它们可以衡量两个变量之间相关性的大小,我们需要根据数据满足的不同条件,选择不同的相关系数进行计算和分析,具体介绍一些细节,个人感觉还是比较重要的,防止相关性分析的滥用。同时,我们也讨论了典型相关分析的应用,主要用于解决两组变量之间相关关系的一种多元线性统计方法。

一、皮尔逊相关系数

我们先看一下皮尔逊和斯皮尔曼的使用要求,对于皮尔逊要求变量是连续数据,且变量之间具有线性关系,且要求数据服从正态分布,而且一般皮尔逊要求用在定距和定距变量之间的相关性检验,定序与定序变量要求用斯皮尔曼。

由于皮尔逊相关性检验的限制比较多,所有我们在使用之前需要进行限制条件的验证,由于是否是定距变量及是否连续可以直接看出来,故我们首先需要对变量进行线性检验,通过SPSS绘制矩阵散点图,来判断变量之间是否具有线性关系,必须有线性关系,才能使用皮尔逊检验。

我们看一个例子就可以了,具体如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuist__NJUPT

给个鼓励吧,谢谢你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值