目录
本节重点学习两种相关性分析,pearson和spearman,它们可以衡量两个变量之间相关性的大小,我们需要根据数据满足的不同条件,选择不同的相关系数进行计算和分析,具体介绍一些细节,个人感觉还是比较重要的,防止相关性分析的滥用。同时,我们也讨论了典型相关分析的应用,主要用于解决两组变量之间相关关系的一种多元线性统计方法。
一、皮尔逊相关系数
我们先看一下皮尔逊和斯皮尔曼的使用要求,对于皮尔逊要求变量是连续数据,且变量之间具有线性关系,且要求数据服从正态分布,而且一般皮尔逊要求用在定距和定距变量之间的相关性检验,定序与定序变量要求用斯皮尔曼。
由于皮尔逊相关性检验的限制比较多,所有我们在使用之前需要进行限制条件的验证,由于是否是定距变量及是否连续可以直接看出来,故我们首先需要对变量进行线性检验,通过SPSS绘制矩阵散点图,来判断变量之间是否具有线性关系,必须有线性关系,才能使用皮尔逊检验。
我们看一个例子就可以了,具体如下: