Yolo实现目标检测

一、介绍Yolo4

YOLO (You Only Look Once)是一种实时目标检测算法,YOLO v4是其第四个版本。它使用单个神经网络来同时预测多个物体的边界框和类别。YOLO v4通过引入一些新的技术和优化来提高检测性能和速度,如使用更大的模型、改进的骨干网络、更高效的数据增强和训练技巧等。

二、使用环境

·NVIDIA GeForce RTX 3050 Laptop GPU
·torch==1.2.0
·Python3.8

三、配置运行环境及安装相关依赖

该实验需要用到以下几种包:

scipy1.2.1
numpy1.17.0
matplotlib3.1.2
opencv_python4.1.2.30
torch1.2.0
torchvision0.4.0
tqdm4.60.0
Pillow8.2.0
h5py==2.10.0

在安装包的时候使用镜像源会安装较快,给出几种常用镜像源:

豆瓣(douban)
http://pypi.douban.com/simple/

清华大学
https://pypi.tuna.tsinghua.edu.cn/simple/

四、数据准备

(一)下载数据集

VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值