一、介绍Yolo4
YOLO (You Only Look Once)是一种实时目标检测算法,YOLO v4是其第四个版本。它使用单个神经网络来同时预测多个物体的边界框和类别。YOLO v4通过引入一些新的技术和优化来提高检测性能和速度,如使用更大的模型、改进的骨干网络、更高效的数据增强和训练技巧等。
二、使用环境
·NVIDIA GeForce RTX 3050 Laptop GPU
·torch==1.2.0
·Python3.8
三、配置运行环境及安装相关依赖
该实验需要用到以下几种包:
scipy1.2.1
numpy1.17.0
matplotlib3.1.2
opencv_python4.1.2.30
torch1.2.0
torchvision0.4.0
tqdm4.60.0
Pillow8.2.0
h5py==2.10.0
在安装包的时候使用镜像源会安装较快,给出几种常用镜像源:
豆瓣(douban)
http://pypi.douban.com/simple/
清华大学
https://pypi.tuna.tsinghua.edu.cn/simple/
四、数据准备
(一)下载数据集
VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: