- 博客(44)
- 收藏
- 关注
原创 docker简单使用
进入和退出docker linux命令docker ps -a 查询已经创建的容器,包括正在运行的和已停止的容器docker start id-name 启动容器docker exec -it id-name /bin/bash 进入容器docker stop id-name 停止容器
2025-01-13 14:48:01
303
原创 【无标题】
onnxruntime 静态量化得到的int8 onnx, 不能转成tensorRT的trt格式,可以转成ORT格式,tensorflow 的QAT精度损失小于onnxruntime静态量化,各位大佬,我说的对么?
2024-07-31 16:52:12
413
原创 ubuntu18.4.0 安装gcc9
sudo add-apt-repository ppa:ubuntu-toolchain-r/testsudo apt updatesudo apt install gcc-9If the add-apt-repository command cannot be found, run this:sudo apt install software-properties-commonAbove commands install just c compiler, if you need c++ compil
2023-11-28 18:11:20
1207
原创 linux apt 安装gcc之后,gcc --version显示的还是旧版本
第三步,重新将新安装的gcc8链接上,sudo ln -s /usr/bin/gcc-8 /usr/bin/gcc。首先,gcc-8 --version, 如果可以显示出来是gcc8的版本证明安装成功了。第二步,删除之前的链接,sudo rm /usr/bin/gcc。第四步,gcc --version显示的就是gcc8了。
2023-11-28 14:27:00
1603
原创 linux C++ onnxruntime perf冲突
编写C++代码用于onnxruntime的模型推断,将代码成功汇编之后,单独运行汇编文件没有问题,但是想加上perf查看CPU占用率时报错。
2023-10-23 15:43:52
384
原创 【无标题】
python 做int8量化,onnx动态修改batch_size不能大于数据的第一维度。onnx动态修改batch_size不能大于数据的第一维度。
2023-07-27 18:10:00
110
原创 【无标题】
求答案离线安装环境:python = 3.8cuda =11.1cudnn = 8.6tensorflow-gpu-2.11.0(tensorflow-gpu-2.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl)pynvml = 11.4tensorRT = 8.5numpy = 1.23.5h5py = 3.8.0tf2onnx = 1.13.0onnxruntime = 1.8.0onnx = 1.12
2023-04-07 16:39:51
276
原创 【无标题】
git 将本地文件上传到指定远端分支步骤:本地新建文件夹本地git bash here本地git init去远端分支的master找到git 地址 git@gitlab…test.git在本地git clone git@… 并cd 到特定分支的文件夹 # 与远端master的git连接在本地切换到指定远端分支 git checkout test 并git pull # 将特定分支的git拉下来将自己的改动文件放进本地文件夹git add .git commit -m ‘data
2021-12-22 16:51:09
95
原创 【无标题】
简单排序之插入排序# 插入排序def insert_order(list): print('========插入排序之前的list:', list) for i in range(len(list)): while i >= 1: if list[i] < list[i-1]: list[i-1], list[i] = list[i], list[i-1] i -= 1 p
2021-11-22 19:52:00
658
原创 2021-11-10
简单排序算法# 选择排序def order_list(list): for i in range(len(list)): min_index = i for j in list[i:]: if j < list[min_index]: min_index = list.index(j) list[i], list[min_index] = list[min_index],
2021-11-10 21:58:17
256
原创 20210329wt,简单线性函数利用sgd求解w和b
线性回归+梯度下降import numpy#2021/3/29/wt, 简单的线性函数利用梯度下降来求解w和b# y = wx + b, 计算当前的权重时的误差def compute_error_for_line_given_points(b, w, points): totalError = 0 for i in range(0, len(points)): x = points[i, 0] y = points[i, 1] to
2021-03-29 22:55:13
369
原创 2020/9/1解决pytho内存满了问题
终于找到错误的位置了!!!list.append惹的祸,我把list=[]放在了循环外部,应该放在循环内部!!!应该是每次都进一个,然后删除的,但是没有删除一直在往里面加东西,导致内存爆炸!!!...
2020-09-01 09:19:28
126
原创 2020/8/26tensor的基本操作
tensor常用的操作import torch as timport numpy as npa = t.Tensor(5, 3)b = t.Tensor([[1, 2], [3, 4]]) # 输出的是浮点型数据的tensorc = t.tensor([[1, 2], [3, 4]]) # 输入的数据是什么类型,输出的tensor就是什么类型b = b.tolist() # 将tensor类型数据转换为list类型print(a.shape)
2020-08-26 19:58:07
204
原创 2020/8/26pytorch入门之hook
保存查看非叶子节点的gradimport torch as tfrom torch.autograd import Variable as V# 获取非叶子节点的grad值方法x = V(t.ones(3), requires_grad=True)w = V(t.rand(3), requires_grad=True)y = x * wz = y.sum()#print(x.grad, w.grad, y.grad) # 中间节点y的梯度值被自动消除了# 方法一:#z.backwa
2020-08-26 19:55:32
117
原创 2020/8/26pytorch简单线性回归实战
简单的线性回归(手动求导与autograd自动求导)import torch as tfrom torch.autograd import Variable as V# 简单的线性回归,y = w*x + b, 根据随机梯度下降得到最接近的w和b# 第一步准备数据t.manual_seed(1000)def get_fake_data(batch_size=8): x = t.rand(batch_size, 1)*20 y = x*2 + (1+t.randn(batch_
2020-08-26 19:45:51
129
原创 2020/8/24LeNet(CIFAR分类-pytorch入门与实战)
CIFAR分类import torchvision as tvimport torchvision.transforms as transformsfrom torch import optimimport torch as timport torch.nn as nnfrom torch.autograd import Variableimport torch.nn.functional as F# 准备数据集transform = transforms.Compose([ t
2020-08-24 19:26:07
122
原创 2020/8/24LeNet(pytorch入门与实战)
LeNetimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variableimport torch as timport torch.optim as optimclass Net(nn.Module): def __init__(self): # nn.Module子类的函数必须在构造函数中执行父类的构造函数 super(Net, self)
2020-08-24 16:38:55
141
原创 2020/8/18在服务器端有默认的python2.7切换到python3.5
服务器端切换python默认版本命令1: ls /usr/bin/python*命令2: alias python=’/usr/bin/python3.5’
2020-08-18 20:34:58
157
原创 2020/8/18解决服务器安装mxnet的timeout问题
安装GPU版本的mxnet, 豆瓣的镜像给力,贼快!命令: pip install mxnet-cu100 -i https://pypi.douban.com/simple对应的是cuda 10.0(nvcc -V命令查看cuda版本)命令:pip install mxnet-cu101 -i https://pypi.douban.com/simple对应的是cuda 10.1(nvcc -V命令查看cuda版本)...
2020-08-18 20:29:47
249
原创 2020/8/18解决mxnet安装出现unpack问题
pip安装出现unpack问题,多半是镜像的问题,解决方法如下:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn 模块名
2020-08-18 11:13:16
136
原创 20200818解决import rcnn导入失败的问题
cython 没有编译成功导致import rcnn失败,解决方法是:第一步,首先检查cython安装: import cython 没有模块的话:pip install cython第二步,其次运行:python3.5 setup.py install第三步,其次运行:python3.5 setup.py build_ext --inpace最后就没问题了!...
2020-08-18 11:11:00
305
原创 2020/8/13pytorch入门
CIFAR简单分类:import torchvision as tvimport torchvision.transforms as transformsfrom torchvision.transforms import ToPILImagefrom torch import optimimport torch as tfrom multiprocessing import spawnimport torch.nn as nnfrom torch.autograd import Varia
2020-08-13 22:10:28
112
原创 变量
变量# 全局变量,在函数内部有相同的形参时也可以使用number = 520# 这里定义两个函数用于展示全局变量和局部变量def number_result(): # global number ,在函数里面修改全局变量 global number # 局部变量,只在函数内部使用 number = 100 print('局部变量是:', number)def number_result2(): print('全局变量是:', number)
2020-06-07 17:17:51
147
原创 python 可变数据类型 ——不可变数据类型
可变数据类型和不可变数据类型# 数字是不可变数据类型,当数字的值发生改变的时候其id存储位置也发生了改变a = 1b = aprint(a)print(id(a))print(b)print(id(b))a = 2print(a)print(id(a))print(b)print(id(b))# python 里面是根据引用传递,不是根据值传递# 列表是可变数据类型,当列表内数值发生改变的时候,其id存储位置不发生改变lis_a = [1, 2]lis_b = lis_
2020-06-07 17:16:55
162
原创 python 异常情况处理
异常情况处理def ceshi(): number = input('请输入一个数字: ') number = int(number) # try 里面是有可能有异常的 try: result = 10/number # except 是异常捕获,多个except也只能执行一个 except ValueError: print('请输入整数') except ZeroDivisionError: pri
2020-06-07 17:14:34
158
原创 python 类
类# Python万物皆对象,类的使用,里面是方法的定义和属性# 一、创建类:class Dog(): # 属性初始化定义:初始化类的属性,这个是在类的内部定义类的属性(常用),也可在类的外部定义类的属性 def __init__(self): self.name = '小黑' self.age = 10 self.weight = 20 # 定义类中的方法: def run(self): print
2020-06-07 17:12:53
169
原创 闭包
闭包# 闭包:1、有内层函数,也就是有嵌套 2、内层访问外层变量 3、外层返回内层结果# 全局变量不受函数内相同名字变量的影响number = 666def outer_func(): number = 200 # 修改外部函数变量用nonlocal,前提条件是1、有外部函数嵌套 2、number 这个变量在外部函数里面有 def inner_func(): nonlocal number number = 520 prin
2020-06-07 17:11:33
216
原创 基于闭包的装饰器
基于闭包的装饰器# 一、装饰器,在不改变原有代码的基础上增加新的功能# 闭包三个条件 1、嵌套函数 2、内层函数调用外部函数的变量 3、外层函数返回内层函数名# 这里将函数作为参数传递给另一个函数def out_func(func): def yanzheng(): # 这里是内层函数调用了外层函数的变量 func() print('———正在验证———') # 这里是外层函数返回了内层函数名 return yanzhen
2020-06-07 17:09:17
156
原创 总结《算法图解》第8章
贪婪算法试图从局部最优解得到全局最优解,旅行商问题和覆盖问题都是典型的NP问题。下面是电台覆盖的问题:1、首先选择能覆盖最多州的电台。2、从剩下的电台里面找到在剩下的未覆盖的州能覆盖最多的电台3、循环上面步骤,直到所有的州都被电台覆盖,即使有的州被重复覆盖# 贪婪算法,先选取众多选择里面最好的,然后从剩下的里面选择最好的,直到到达基线条件states_needed = set(['m...
2020-04-23 17:19:44
183
原创 总结《算法图解》第7章
狄克斯特拉算法主要思想是:1、找出最便宜的节点,在最短时间内前往的节点,建立一个costs图和parents图,也就是出发点到各点的距离和父子节点关系图。2、根据第一步找得到的节点,找到其邻居节点,更新经过第一步找到点的costs图和已该节点为父节点的parents图。3、重复以上两个过程,直到图中所有点都已经做过了以上循环。4、计算最终路径。# 狄克斯特拉算法适用于有向无环图,不包含...
2020-04-20 20:19:10
193
原创 总结《算法图解》第6章
无向图的广度优先搜索graph = {}graph['wt'] = ['a', 'b', 'c']graph['a'] = ['d']graph['d'] = []graph['b'] = ['t', 1]graph['t'] = []graph['c'] = ['e', 1]graph['e'] = []graph[1] = []def bfs(name): se...
2020-04-14 15:40:39
221
原创 递归、栈、分而治之
1、栈# 栈,用于存储多个函数的变量,被称为调用栈def greet(name): print('hello' + name + '!') greet2(name) print('getting ready to say bye') bye(name)def greet2(name): print('how are you?' + name)...
2020-03-03 22:55:42
126
原创 《算法图解》之1-4章小结
1、二分查找# 二分查找,O(long(n))def bin_search(list, item): low = 0 high = len(list)-1 while low <= high: mid = round((low + high) / 2) guess = list[mid] if guess == ...
2020-03-03 22:47:24
114
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人