LeNet
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch as t
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
params = list(net.parameters())
print(len(params))
for name, parameters in net.named_parameters():
print(name, ":", parameters.size())
input = Variable(t.randn(1, 1, 32, 32))
output = net(input)
print(output.size())
"""
# 梯度会累计,需要梯度清零
print("没有更新之前的net.conv1.bias", net.conv1.bias.grad)
net.zero_grad()
output.backward(Variable(t.ones(1, 10))) # 自动求导
print(net.conv1.bias.grad)"""
target = Variable(t.arange(0, 10))
criterion = nn.MSELoss()
loss = criterion(output, target.float())
print("loss:", loss)
optimizer = optim.SGD(net.parameters(), lr=0.01)
optimizer.zero_grad()
print("没有更新之前", net.conv1.bias.grad)
loss.backward()
optimizer.step()
print("更新之后", net.conv1.bias.grad)
运行结果
