密码分析中的差分攻击与MRHS方程系统研究
1. 差分攻击相关研究
在密码分析领域,差分攻击是一种重要的手段。对于SHACAL - 1算法,研究人员提出了不同的攻击方法。通过去除第二个差分的最后一轮,可以得到一个概率为$2^{-61}$的66轮相关密钥矩形区分器。基于此,能够对SHACAL - 1进行相关密钥矩形攻击,该攻击的数据复杂度为$2^{144}$个选择明文,时间复杂度为$2^{494} = (2^{354} × 2^{144} × \frac{1}{2} × \frac{11}{80})$次SHACAL - 1加密。
另外,对于IDEA算法的攻击也有了改进。以6.5轮IDEA的相关密钥矩形攻击为例,该攻击使用两个相关密钥差分,第一个相关密钥差分的输入差分为$(0, 0, 0001x, 0)$,密钥差分在第40位,且密钥差分有$\frac{1}{2}$的概率抵消输入差分。实际上,对于与密钥差分符号相反的明文对,该差分第一部分的概率为1;对于与密钥差分符号相同的明文对,概率为0。基于此观察,攻击者可以先考虑差分位符号相同的明文对进行攻击,如果失败,再用相反符号的明文对重复攻击。这种方法能使$\hat{p}$的值增加一倍,对于正确的符号猜测,数据复杂度可降低一半。虽然由于密钥差分的实际符号未知,攻击需要重复两次,但时间复杂度可降低一半,因为每次应用时分析的四重元数量是原始攻击的四分之一。
对于差分攻击,通常数据复杂度不会降低,但时间复杂度可能降低;而对于回旋镖攻击,由于数据复杂度与$\frac{1}{\hat{p}^2\hat{q}^2}$成正比,因此除了可能降低时间复杂度外,数据复杂度也有望降低。
研究还指出,在使用异或差分进行加法运算时,差分攻击需要非常谨慎。通