- 博客(355)
- 收藏
- 关注
原创 数据怎么分层?从ODS、DW、ADS三大层一一拆解!
构建高效有序的数据管理体系 数据分层是解决数据混乱问题的有效方法,通过建立清晰的数据层次结构,让每类数据都有固定位置和职责。核心分为三层:数据运营层(ODS)保存原始业务数据,数据仓库层(DW)进行加工处理(含明细层DWD、中间层DWM和服务层DWS),数据应用层(ADS)面向最终业务使用。合理的分层设计能带来八大优势:提升数据质量、优化性能、易于维护、增强灵活性、支持多维分析、减少冗余、便于历史数据管理和提高可扩展性。分层原则包括:按应用支持程度、业务覆盖范围和数据聚合程度进行划分。
2025-07-15 23:16:19
332
原创 什么是实时数据同步?纯干货解读!
数据同步面临三大核心痛点:延迟问题导致决策滞后,不规范表结构引发增量同步困难,故障恢复机制缺失造成脏数据风险。实时数据同步的本质是毫秒级的事件驱动传输,通过解析数据库日志(如Binlog)捕获变更,结合消息队列(如Kafka)缓冲数据流,确保低延迟和高可靠性。关键实现步骤包括:日志解析替代轮询查询、队列化传输解耦系统压力、自动结构同步与事务保障机制(如熔断、重试)。该方案能有效解决80%的同步难题,使数据真正赋能实时决策。
2025-07-14 21:41:34
518
原创 我花10个小时,写出了小白也能看懂的数仓搭建方案
数据仓库是企业决策支持系统的核心,通过集成多源业务数据,提供稳定可靠的历史数据支持。搭建数据仓库需考虑业务需求、技术选型、数据建模和BI应用四个维度,采用分层架构(ODS原始数据层、DW整合层、DM应用层)实现。其优势体现在提升查询性能、降低成本、提高效率、保障数据质量等方面,能有效打破数据孤岛,统一指标口径,支持管理决策。合理的数仓建设需要从业务梳理出发,选择合适技术工具,循序渐进地完成数据分层加工,最终服务于报表分析、数据挖掘等应用场景。
2025-07-11 21:41:19
1008
原创 实时数仓和离线数仓还分不清楚?看完就懂了
数据仓库分为离线数仓和实时数仓两大类型。离线数仓采用批处理模式,通过Hive等工具处理T+1数据,适用于海量历史数据分析;实时数仓则基于流处理技术,使用Kafka、Flink等实现秒级数据处理,满足即时分析需求。二者核心区别体现在架构设计(Lambda/Kappa)、建设方法(主题建模)和数据保障机制上。实时数仓建设需重点关注业务需求、技术选型(数据采集、处理、存储层)和监控体系。企业应根据时效性要求、数据规模等实际需求,选择适合的架构方案或将两者融合,充分发挥数据价值。
2025-07-11 21:18:23
633
原创 怎么处理多源异构数据?搞不清楚就别谈数据融合!
多源异构数据指来源多样、格式各异的数据集合,包括结构化、半结构化和非结构化数据。处理时面临三大痛点:数据结构不匹配、语义不一致和时间不同步。数据融合需"以终为始",根据业务目标选择不同处理方式:用户画像需要深度融合形成宽表,设备预警则采用浅层实时处理。建议采用专业工具(如FineDataLink)实现数据接入、转换、输出和同步的全流程管理,强调理解数据差异比单纯合并更重要。有效的多源异构数据处理需明确业务目标,建立数据规范,才能让杂乱数据真正为业务服务。
2025-07-11 21:00:49
942
原创 终于有人把数据仓库讲明白了
数据仓库是企业数据管理的核心枢纽,它不是简单的数据库或BI附属品,而是整合多源数据、提供分析决策支持的体系化解决方案。其典型架构分为四层:ODS层存储原始数据,DWD层清洗数据,DWS层轻度汇总,ADS层面向报表应用。搭建数据仓库需遵循明确业务需求、梳理数据源、设计架构三大步骤,通过ETL流程实现数据标准化处理。最终目标是建立统一的数据服务体系,让分散的数据变得可查、可用,真正赋能业务决策。建设过程应循序渐进,从核心需求切入,逐步完善架构。
2025-07-10 10:47:54
548
原创 终于有人把数据血缘讲明白了
数据血缘是指数据从产生到消亡全生命周期的关联关系,包含数据源、处理过程和数据去向三大要素,具有归属性、多源性、可追溯性和层次性特征。其核心价值在于保障数据质量、满足合规审计、优化数据资产管理和促进系统集成。通过记录数据的完整流转路径,可实现问题快速定位、影响范围评估、合规性检查等目标,是数据治理的重要基础。理解数据血缘有助于企业实现高效规范的数据管理,为数字化转型提供关键支撑。
2025-07-10 10:37:03
543
原创 终于有人把湖仓一体讲清楚了
湖仓一体:大数据管理新范式 随着企业数据需求日益复杂,传统数据仓库和数据湖的局限性逐渐显现。湖仓一体应运而生,将二者的优势融合为统一架构。数据仓库擅长结构化数据分析但缺乏灵活性,而数据湖能存储多类型数据却难以高效分析。湖仓一体通过统一存储、支持事务、存算分离等技术,实现了一份数据、多种分析的目标。 其运作流程包含数据接入、智能存储、多样化处理和应用输出四个环节,支持批处理、流式计算等多种分析场景。这种架构既保留了数据湖的灵活性,又具备数据仓库的性能优势,显著降低了企业数据管理成本。
2025-07-10 10:19:26
628
原创 数据中台是什么?一文讲清为什么要建设数据中台
数据中台的本质是“数据民主化”它不是什么神奇银弹,而是让企业从“数据有但不给用”走向“数据随时能用”的基础工程。核心价值就三点:打通孤岛、提速决策、降低成本。但记住:工具只是骨架,成功的关键在于持续治理、业务驱动、全员协作。铜仁教育中台缩短了排课时间,南阳政府追回了千万税款,华能资本省下了IT人力——这些才是数据中台最朴素的真相。
2025-07-07 20:44:31
935
原创 什么是数据中台,一文读懂数据中台核心功能
数据中台是企业实现数据价值转化的核心平台,通过整合分散数据、统一存储处理、提供标准化服务,解决数据孤岛问题。其核心功能包括数据整合、存储、处理、服务和治理,能够支持精准营销、风险管理、产品创新和运营优化等业务场景。建设过程需经过规划、治理、集成、服务开发和持续运营五个阶段,关键在于数据治理先行、业务需求驱动和技术选型合理。虽然投入较大,但对于数据规模大、业务复杂的企业,数据中台能有效提升数据资产价值,推动数字化转型。成功实施需要跨部门协作,避免低估数据治理难度和技术整合风险。
2025-07-07 20:29:51
758
原创 数据中台架构解析:湖仓一体的实战设计
数据中台与湖仓一体架构是企业应对数据管理挑战的关键解决方案。数据中台作为统一管理平台,打破数据孤岛,实现高效共享;湖仓一体架构则融合数据湖(灵活存储多样化数据)与数据仓库(高效分析处理)优势,避免数据重复搬运。核心组件包括数据湖、数据仓库、集成工具和分析引擎。实战设计中需重点关注需求分析、数据湖建设、仓库模型设计、集成同步及分析应用开发。该架构特别适合数据量大、类型复杂且需实时分析的企业,但需警惕数据治理不足、技术选型不当等常见陷阱。
2025-07-07 20:12:47
882
1
原创 一文读懂数据中台架构,高效构建企业数据价值
在数字化时代,数据确实是企业的核心资产,这点大家都认同。但现实情况是:业务系统越上越多,数据反而越散越乱——销售一套数、财务一套数、生产又一套数,互相之间对不上口径,分析起来效率低得让人头疼。说白了,数据用不起来,再多也是负担。数据中台架构,就是为解决这些问题而生的。它不是什么虚无缥缈的概念,而是实实在在帮企业把数据管起来、用起来的一套体系。
2025-07-07 18:30:30
591
原创 为什么说 ODS 是数据中台?3 分钟看懂 ODS 的桥梁角色
本文系统探讨了操作型数据存储(ODS)与数据中台的异同及其在企业数据架构中的关键作用。ODS作为业务系统与数据仓库之间的桥梁,具有实时数据集成、业务决策支持和初步数据治理等功能,与数据中台在数据集成、决策支持和治理方面存在共性。文章分析了ODS作为连接者的具体表现,包括协调数据流动、促进数据共享等,并对比了两者在本质任务、数据范围和应用场景上的差异。
2025-07-04 21:24:29
943
原创 ODS 系统是什么?企业为什么需要搭建 ODS?
ODS系统(操作型数据存储)是企业数据管理的关键环节,用于集成、清洗和实时更新分散的业务数据(如ERP、CRM等),提供统一、可靠的数据视图。其核心功能包括数据集成、清洗转换、实时更新及快速查询,帮助企业打破“数据孤岛”,提升数据质量,支持实时决策和流程优化。金融、制造业、电商等行业可通过ODS系统实现风控监控、生产管理及精准营销。搭建时需应对数据质量、性能及安全挑战,建议结合开源工具(如FineDataLink)分阶段实施。
2025-07-04 21:13:07
667
原创 OLAP 是什么?一文讲清 OLAP 和 OLTP 的区别
在现在这个数字化的时代,数据对企业的价值是实实在在的,说它是核心资产一点不为过。企业每天产生的数据量巨大,但要怎么管好、用好这些数据,确实是不少管理者面临的难题。在数据处理领域,OLAP (联机分析处理) 和 OLTP (联机事务处理) 是两个非常关键又常常被对比的概念。那么,OLAP 到底指的是什么?它跟 OLTP 具体有哪些不同?别急,咱们今天就把这两个概念讲清楚。
2025-07-04 21:03:56
971
原创 如何搭建高效OLAP系统?关键指标必须盯紧了!
OLAP系统建设的关键指标涵盖五大维度:1)数据质量(准确性、完整性、一致性),确保分析基础可靠;2)性能指标(查询响应、并发处理、加载速度),保证系统高效运行;3)功能指标(多维分析、可视化、数据挖掘),提升分析深度和易用性;4)扩展性(数据、功能、用户),适应业务增长需求;5)安全性(访问控制、加密、审计),保障数据资产安全。企业需根据核心业务需求权衡指标优先级,选择开放架构以适应未来发展。
2025-07-04 20:18:11
704
原创 什么是 OLAP?一文搞懂 OLAP 定义及特点
OLAP(联机分析处理)是一种帮助企业快速、灵活分析海量数据的技术。文章从六个维度解析OLAP:首先介绍其定义与产生背景,区别于事务处理系统OLTP;其次阐述OLAP采用的多维数据模型(维度、事实和立方体结构);重点剖析其四大分析功能:切片、切块、钻取和旋转;对比三种实现方式(MOLAP、ROLAP、HOLAP)的优缺点;总结其快速性、可分析性、多维性和信息性四大核心价值;最后通过零售、金融、电信行业的应用案例,说明OLAP如何解决实际业务问题。
2025-07-04 20:10:07
1023
原创 盈利能力分析怎么做?以ROE为例进行拆解
盈利能力分析的关键在于将财务指标转化为可执行的业务决策。本文以ROE为例,提出三步拆解法:1)公式拆解至最小单元;2)业务归因,将数字对应真实场景;3)数据钻取锁定问题。通过动态追踪、月度作战会议、考核指标重建和闭环反馈四步法,实现分析落地。不同业务场景需匹配专属财务坐标:采购关注成本波动,生产追踪良品率,新品上市监控研发回报周期,促销活动评估边际贡献率。有效的盈利分析应成为指导业务作战的地图,而非简单的数据汇报。
2025-07-03 17:14:20
858
原创 财务分析怎么做?一文讲透财务三张表+常用指标!
三张表+20个指标助你快速判断企业健康状况 核心要点: 三大财务报表关系:资产负债表(实力)、利润表(能力)、现金流量表(活力)共同构成企业财务全景图 会计与财务区别:会计负责记账核算(确认/计量/报告),财务侧重资金管理(筹资/投资/分配) 20个关键指标:涵盖盈利能力、盈利质量和偿债能力分析,需结合行业特性灵活运用 掌握三大报表的联动关系(资产=负债+权益;收入-费用=利润)和现金流分类(经营/投资/筹资),就能快速把握企业财务核心状况。分析时要特别注意利润质量与现金流的匹配程度,避免被表面数据误导。
2025-07-03 16:47:44
916
原创 终于有人把数据中台讲明白了
数据中台是企业数字化转型的核心基础设施,其本质是将原始数据转化为可复用的智能服务。阿里提出的大中台、小前台战略及三大体系(OneData、OneEntity、OneService)构建了数据中台的方法论框架。企业需要数据中台来解决数据孤岛、提升数据服务质量、直接创造业务价值等痛点。
2025-07-03 16:01:13
1129
原创 ODS是什么?一文讲清ODS功能有哪些
ODS(操作型数据存储)是企业数据管理的关键环节,位于业务系统与数据仓库之间,负责实时整合和清洗各业务系统数据。其核心功能包括数据集成、清洗转换、实时更新和查询分析,主要应用于实时报表生成、业务监控预警、流程优化和客户关系管理。实施ODS需注重规划设计、数据抽取集成、系统测试和维护优化。面临的挑战包括数据质量、系统性能和安全问题,可通过建立质量管理体系、优化数据库架构和加强安全防护解决。ODS与数据仓库的主要区别在于数据新鲜度和用途,前者支持日常运营决策,后者用于长期战略分析。
2025-07-03 15:48:55
901
原创 终于有人把数据架构讲明白了
数据架构是组织和管理数据的系统性方法,涵盖数据存储、处理、流动和使用的全过程。其发展经历了从早期文件系统(1960s)、关系数据库(1970s)、数据仓库(1990s)到大数据(2000s)、数据湖和云架构(2010s至今)的演变。主流企业架构框架包括TOGAF、DAMA-DMBOK2和Zachman框架。当前主要数据管理系统类型有:数据仓库(结构化数据分析)、数据集市(部门级数据)、数据湖(原始数据存储)、数据结构(自动化数据价值链)和数据网格(去中心化管理)。
2025-07-02 19:24:42
620
原创 采购付款分析怎么做?两步法教你盘活采购资金
本文针对企业采购付款环节存在的逾期款过多、供应商账龄过长、资金周转天数超标等问题进行了系统分析。通过具体案例,指出吴二十二等采购员负责的业务存在严重逾期现象,供应商L的长期欠款占比过高,以及全员周转天数普遍超标等核心问题。同时提出了冻结订单权限、分期还款、账龄优化、付款节点拆分等针对性解决方案。在采购管理方面,建议通过分拆付款节点、库存结构优化和绩效挂钩等措施改善资金效能。文章强调精准定位问题源头并系统优化流程是提升采购资金效率的关键,并提供了可直接套用的分析模板。
2025-07-02 19:15:43
894
原创 什么是数据集成平台?数据集成平台有哪些功能?
数据集成平台是企业数据管理的核心枢纽,通过ETL流程(抽取、转换、加载)打通不同系统间的数据壁垒。其主要功能包括:兼容多源数据抽取、数据清洗转换、多种方式的数据加载,以及全流程监控管理。典型应用场景涵盖企业数据分析、数据仓库建设、系统集成和大数据应用。该平台能有效提升数据质量、降低管理成本,为数字化转型提供坚实基础。与数据仓库的关系类似搬运工与仓库的关系,前者负责数据预处理,后者专注存储分析。处理数据冲突时需制定清洗规则,通过平台转换功能实现自动修正。
2025-07-02 15:17:38
834
原创 数据集成平台是什么?一文看懂数据集成平台架构全流程
数据集成平台是企业解决数据孤岛问题的核心工具,通过抽取、转换、加载(ETL)流程整合多源异构数据。其重要性体现在三个方面:打破信息壁垒、提升数据质量和支撑数据决策。平台采用六层架构设计:数据源层连接各类系统;抽取层采用增量/全量策略获取数据;转换层进行数据清洗与标准化;加载层将处理后的数据输送至目标系统;管理层负责任务调度与质量监控;服务层通过API提供数据服务。优秀架构具备灵活扩展、高效稳定和安全合规三大优势,FineDataLink等工具可有效降低实施难度。
2025-07-02 15:10:24
647
原创 2025BI工具选型避坑指南:十工具横评
数据孤岛困住82%的企业,67%的团队在手工报表中消耗40%以上人力成本——这不是未来预测,而是2025年当下中国企业数据决策的真实困境。那么,BI工具到底应该怎么选?本文接下来将详细介绍当下十款热门产品,罗列各产品优缺点及适用人群,了解过后大家可按需选择。
2025-07-01 19:31:28
582
原创 为什么很多企业需要数据集成平台?这3个案例说透了!
本文探讨了数据集成平台在制造业、零售业和金融行业中的关键作用。制造业通过平台整合生产数据可提升效率与质量;零售业借助平台融合多渠道数据实现精准营销;金融行业利用平台整合风险数据加强风控。平台的核心优势在于提升运营效率、支持科学决策和增强企业竞争力。虽然企业可能存在对操作复杂性和安全性的疑虑,但现代数据集成平台通常提供可视化界面和严格的安全保障,能有效解决数据孤岛问题,是企业数字化转型的重要工具。
2025-07-01 19:20:57
576
原创 数据集成平台怎么选?5步避坑指南助你精准决策!
选择数据集成平台是一个复杂的过程,企业需要从明确自身数据集成需求、评估平台的数据处理能力、考察平台的稳定性与可靠性、关注平台的易用性与集成性以及对比平台的成本与性价比等五个方面进行综合考虑。只有明白了这些方面,才能更好地选择到适合自己企业的数据集成平台,,进而助力企业更好的发展。
2025-07-01 19:12:46
582
原创 什么是数据分析?常见方法全解析
数据分析是通过系统化处理原始数据获取有价值信息的过程,广泛应用于商业、科研等领域。常见方法包括描述性分析(基础统计)、相关性分析(变量关系)、回归分析(因果预测)、聚类分析(数据分组)和时间序列分析(趋势预测)。方法选择需结合分析目的和数据特征,实践中常需多种方法组合使用。数据分析面临数据质量、安全和人才短缺等挑战,可通过规范流程、权限管控、人才培养和工具应用(如FineBI)来应对。入门者可从基础统计开始学习,配合易用工具逐步掌握分析技能,但需注意分析结果的可靠性受数据质量和方法选择影响。
2025-07-01 19:05:14
825
原创 十大数据融合平台全方位对比来袭!总有适合你的那一款!
无论是FineDataLink、Pentaho Data Integration的可视化易用性,还是Talend的开源生态、Informatica PowerCenter的企业级能力,或是华为云FusionInsight、阿里云DataWorks、DataPipeline等国产方案的深度适配与实时处理能力,都为不同规模、不同需求的企业提供了多样化的选择。但平台的选择核心在于匹配企业自身的数据环境、技术栈、处理规模及安全合规要求。清晰了解平台特性与自身需求,是做出明智决策的基础。希望企业能够依据自身实际需求,
2025-06-30 22:00:35
562
原创 终于有人把数据建模讲明白了
实体建模强调业务抽象,范式建模强调结构规范,维度建模追求分析效率,三者各有优势,服务不同场景。真实项目里,没有哪种方法是“标准答案”,更多时候是协同使用、分层应用、动态演进的。理解每种方法背后的逻辑和业务目标,才是做好数据建模的第一步关键。
2025-06-30 21:49:37
685
原创 深度测评2025年十大BI报表工具,BI 选型就看这篇!
选BI工具就像找搭档,得看合不合得来。建议企业先看看自己的数据量有多大,再看看团队是更懂业务还是更懂技术,最后想想有没有合规要求。按照这个逻辑选,大概率不会错。希望大家都能找到那个让数据真正为业务服务的BI工具,别再让数据孤岛拖慢你的决策速度了!
2025-06-30 21:40:52
802
原创 库存周转率:不拆解,就谈不上真正的分析!
在很多公司,尤其是做制造和批发零售的,老板最爱问的一句话是什么? “咱们库存周转率多少?”每次月底开会,总有人在PPT第一页放上个大数字:“存货周转率:7.2。” 然后一通拍桌子“这个数要提上去啊!库存要动起来啊!” 讲真,这画面我见太多了。可问题是,光看一个库存周转率,其实根本说明不了库存到底健不健康。甚至很多时候,这个数字还挺“骗人”的。你不拆解它,根本不知道后面到底是哪里出的问题。今天咱们就来聊聊:为什么存货周转率一定要拆解?怎么拆?拆出来要看什么?这篇文章我尽量说得明白点,不讲公式堆砌
2025-06-30 21:27:38
1029
原创 行业对标分析怎么做?四大模块手把手带你一一解读
行业对标分析是提升企业竞争力的关键工具。通过经营利润、现金流量、资产负债和资产周转四大维度的对比,企业能清晰定位行业排名,发现与标杆企业的差距。分析结果显示,虽然某企业营收行业第一,但毛利率22.54%低于标杆企业28.07%,研发费用骤降61.33%,现金流同比下降13.86%,存货周转171天远长于标杆企业的113天。这些数据为企业优化提供了明确方向:调整成本结构、平衡研发投入、加强应收账款和存货管理。对标分析将数据转化为行动指南,帮助企业精准提升运营效率,实现可持续发展。
2025-06-26 22:37:16
712
原创 数据分析师的出路在哪里?3阶段未来职业规划路径
本文系统梳理了数据分析领域的职业发展路径。首先介绍了六大细分方向(商业分析、需求响应、决策支持、BI工程、算法工程等)及其核心能力要求,为从业者提供精准的岗位定位。其次提出了三三制能力培养体系:20%专注工具(Excel/SQL/Python)、50%思维训练(问题界定/分析框架)、30%业务理解(行业知识/数据直觉)。最后将职业发展划分为三个阶段(生存期/突破期/主导期),明确各阶段的目标任务。
2025-06-26 22:30:27
972
原创 一张BOM表,决定着企业的生产成本、排产效率和资金周转!
BOM(物料清单)是制造业的核心基础数据,直接影响企业成本、排产效率和现金流。一张合格的BOM需要结构完整、用量准确、及时更新、逻辑清晰。企业应将BOM与BI系统结合,实现成本构成、排产瓶颈、库存质量和工程变更影响的可视化分析。优化BOM管理是解决制造业诸多问题的关键,建议企业从结构合理性、系统集成和数据追溯性等方面着手改进,才能提升运营效率和利润空间。
2025-06-26 22:22:53
1007
原创 企业做数据化,先搞清楚:数据中台、数据平台、数据湖、数据仓库不是一回事!
本文系统梳理了数据仓库、数据湖、数据平台和数据中台四大数据管理系统的核心特征与应用场景。数据仓库作为结构化分析平台,适用于标准报表场景;数据湖侧重原始数据存储,支持灵活分析;数据平台是数据治理的中枢系统;数据中台则聚焦业务服务能力。企业应根据实际需求分阶段建设:基础期先建数据仓库,成长期完善数据平台,成熟期构建中台能力,大规模非结构化数据场景再考虑数据湖。实施关键在于匹配业务需求,避免盲目跟风概念,通过逐步构建数据治理体系实现数据价值落地。
2025-06-26 22:07:59
1095
原创 什么是数据融合?一文讲清实时数据融合平台的底层逻辑!
实时数据融合平台通过整合多源数据,实现高效的数据采集、处理、存储和分析,支持企业快速决策。其核心流程包括:数据采集(通过ETL工具、消息队列等技术)、数据处理(清洗转换和流式计算)、数据存储(NoSQL数据库和数据仓库)及数据分析(可视化与数据挖掘)。该平台广泛应用于金融、医疗、零售等行业,能提升业务响应速度和竞争力。虽然技术要求较高,但在数字化转型的背景下前景广阔。
2025-06-25 23:08:43
1231
原创 数据想讲真话,老板却只想听好话?BI在中国难做不是没原因!
BI,全称是Business Intelligence(商业智能),本质上就是一个帮助企业“看清数据、用好数据、辅助决策”的工具系统。它不是简单做图表,也不是一个独立软件,而是把企业里四面八方的数据——像销售、采购、库存、人力、财务这些——拉通后,统一建模、自动分析,让老板和业务一线能:看趋势:销量、库存、毛利率,是升是降,一目了然;找问题:哪个产品拖后腿?哪个部门效率低?系统自动预警;辅决策:哪个策略效果好?哪个区域需要加人?图表说话、快速响应。
2025-06-25 23:03:11
964
原创 库存分析不只是看库存量!采购看结构,仓储看周转,销售看动销!
库存管理仅看总量远远不够。核心在于分析库存结构、周转率和动销情况:采购需关注品类结构与实际出库匹配度;仓储要盯住周转效率,识别滞销品;销售应掌握动销数据,避免信息断层。建议借助BI工具建立多维分析看板,实现库存可视化、预警自动化和决策数据化,让采购、仓储、销售三方协同,才能真正盘活库存资金,控制经营风险。
2025-06-25 22:54:29
680
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人