算法(递归):n皇后

该文介绍了如何使用回溯算法解决n皇后问题,即在n×n的棋盘上放置n个皇后,确保它们互不攻击。代码实现了一个递归的backTracking函数,通过检查当前位置是否合法并进行递归放置,最后收集所有可能的解法。isValid函数用于判断当前位置是否能放置皇后,避免行、列和对角线上的冲突。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 1 和 0 分别代表了皇后和空位。

    static LinkedList<int[][]> path = new LinkedList<>();

    public static void backTracking(int[][] chess,int n,int row) {
        if (row == n){
            path.addLast(copy2Arr(chess));
            return;
        }
        for (int i=0;i<n;i++){
            if (!isValid(chess,row,i)){
                continue;
            }
            chess[row][i] = 1;
            backTracking(chess,n,row+1);
            chess[row][i] = 0;
        }
    }

    public static boolean isValid(int[][] chess,int row,int col){
        for (int var = 0;var<row;var++){
            if (chess[var][col]==1){
                return false;
            }
        }
        for (int i=row-1,j=col-1;i>=0&&j>=0;i--,j--){
            if (chess[i][j]==1){
                return false;
            }
        }
        for (int i=row-1,j=col+1;i>=0&&j<chess.length;i--,j++){
            if (chess[i][j]==1){
                return false;
            }
        }
        return true;
    }

    public static int[][] copy2Arr(int[][] chess){
        int[][] newChess = new int[chess.length][chess.length];
        for (int i = 0; i < newChess.length; i++) {
            newChess[i] = Arrays.copyOf(chess[i],chess[i].length);
        }
        return newChess;
    }


    public static LinkedList<int[][]> solveNQueens(int n) {
        int[][] chess = new int[n][n];
        backTracking(chess,n,0);
        return path;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值