n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 1 和 0 分别代表了皇后和空位。
static LinkedList<int[][]> path = new LinkedList<>();
public static void backTracking(int[][] chess,int n,int row) {
if (row == n){
path.addLast(copy2Arr(chess));
return;
}
for (int i=0;i<n;i++){
if (!isValid(chess,row,i)){
continue;
}
chess[row][i] = 1;
backTracking(chess,n,row+1);
chess[row][i] = 0;
}
}
public static boolean isValid(int[][] chess,int row,int col){
for (int var = 0;var<row;var++){
if (chess[var][col]==1){
return false;
}
}
for (int i=row-1,j=col-1;i>=0&&j>=0;i--,j--){
if (chess[i][j]==1){
return false;
}
}
for (int i=row-1,j=col+1;i>=0&&j<chess.length;i--,j++){
if (chess[i][j]==1){
return false;
}
}
return true;
}
public static int[][] copy2Arr(int[][] chess){
int[][] newChess = new int[chess.length][chess.length];
for (int i = 0; i < newChess.length; i++) {
newChess[i] = Arrays.copyOf(chess[i],chess[i].length);
}
return newChess;
}
public static LinkedList<int[][]> solveNQueens(int n) {
int[][] chess = new int[n][n];
backTracking(chess,n,0);
return path;
}