算法(动态规划):不同路径 II

该算法解决了一个机器人从网格左上角到达右下角的路径问题,考虑了障碍物的影响。通过动态规划,初始化边界条件,然后使用递推公式计算每个位置的不同路径数,若遇到障碍物则跳过。最后返回右下角的路径数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

    public static int uniquePaths(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        //如果在起点或终点出现了障碍,直接返回0
        if (obstacleGrid[0][0] == 1 && obstacleGrid[m - 1][n - 1] == 1) {
            return 0;
        }
        int[][] dp = new int[m][n];
        //最左边一竖是1,因为只往下走,若有障碍物,后面都为0
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        //最上边一横是1,因为只往右走,若有障碍物,后面都为0
        for (int i = 0; i < n && obstacleGrid[0][i] == 0; i++) {
            dp[0][i] = 1;
        }
        //递推 dp[i][j] = dp[i-1][j] + dp[i][j-1],若有障碍物,该位置为0
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 1) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值