一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
public static int uniquePaths(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
//如果在起点或终点出现了障碍,直接返回0
if (obstacleGrid[0][0] == 1 && obstacleGrid[m - 1][n - 1] == 1) {
return 0;
}
int[][] dp = new int[m][n];
//最左边一竖是1,因为只往下走,若有障碍物,后面都为0
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
//最上边一横是1,因为只往右走,若有障碍物,后面都为0
for (int i = 0; i < n && obstacleGrid[0][i] == 0; i++) {
dp[0][i] = 1;
}
//递推 dp[i][j] = dp[i-1][j] + dp[i][j-1],若有障碍物,该位置为0
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}