通过对网上公开的数据结构和算法面试题进行处理和分析,统计出了常见的面试真题出现的年份、公司、出现概率等信息。帮助大家求职复习的时候,更有针对性。
1. 介绍知道的排序算法
出现年份:2025,2024,2023,2022 | 出现概率:3.11% | 公司:华为OD, Momenta, 杭州灵岫科技 等
答案
排序算法是数据结构和算法领域中非常重要的一部分,用于将一组数据按照特定顺序(通常是升序或降序)进行排列。以下为你详细介绍常见的排序算法:
1. 冒泡排序(Bubble Sort)
- 原理:重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
- 代码示例(Python):
def bubble_sort(arr):
n =...[查看完整答案]
2. 简述链表与数组的区别 ?
出现年份:2025,2024,2023,2022 | 出现概率:3.03% | 公司:字节跳动, CVTE视源股份, 酷开 等
答案
链表和数组是两种常见的数据结构,它们在存储、访问和操作数据方面有几个明显的区别:
1. 存储方式
- 数组:在内存中占用连续的存储空间。在声明数组时,需要定义其大小。
- 链表:由节点构成,每个节点包含数据和指向下一个节点的指针,节点在内存中不是连续存储的。
2. 大小
- 数组:大小固定,一旦定义无法改变。若需要更大或更小的数组,必须创建新的数组并复制数据。
- 链表:大小动态可变,可以根据需要随时添加或删除节点,内存需求更灵活...[查看完整答案]
3. 哈希表冲突的解决办法有哪些?
出现年份:2025,2024,2023,2022 | 出现概率:2.26% | 公司:字节跳动, 度小满, 360 等
答案
哈希表中的冲突是指当多个键值对映射到同一个哈希桶时发生的情况。处理哈希表冲突的方法主要有以下几种:
-
链式地址法(Separate Chaining):
- 在每个哈希桶中使用链表(或其他数据结构)来存储所有哈希值相同的元素。当发生冲突时,将新元素插入到相应桶的链表中。
- 优点:简单易实现,动态扩展方便。
- 缺点:在负载因子较高时,查找性能可能会下降。
4. 简述什么是数据结构?
出现年份:2025,2024,2023,2022 | 出现概率:1.59% | 公司:Momenta, 比亚迪, 字节跳动 等
答案
数据结构是组织和存储数据的方式,以便于高效地进行数据操作和访问。不同的数据结构适用于不同类型的应用和操作需求,主要目的是提高程序的性能和可维护性。
常见的数据结构包括:
-
数组(Array):一组相同类型的元素,存储在连续的内存位置,支持快速访问,但插入和删除操作较慢。
-
链表(Linked List):由一系列节点组成,每个节点包含数据和指向下一个节点的指针,插入和删除操作效率较高,但随机访问效率较低。
...[查看完整答案]
5. 请说明快速排序一般情况下的时间复杂度
出现年份:2025,2024,2023,2022 | 出现概率:1.47% | 公司:东软, Shopee虾皮, 虎牙 等
答案
快速排序(Quick Sort)是一种高效的排序算法,采用分治法(Divide and Conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。下面详细说明快速排序一般情况下的时间复杂度。
时间复杂度分析
快速排序的时间复杂度与划分的平衡性有关,下面分三种情况进行讨论:
1. 平均情况
在平均情况下,快速排序每次划分都能将数组大致分成两个大小相近的子数组。设数组的长度为 ...[查看完整答案]
6. 请说明排序算法的时间复杂度
出现年份:2025,2024,2023,2022 | 出现概率:1.15% | 公司:厦门航空, 杭州小厂, 斑马网络 等
答案
排序算法是数据结构和算法领域中的重要内容,不同的排序算法具有不同的时间复杂度,下面将详细介绍常见排序算法的时间复杂度。
1. 冒泡排序(Bubble Sort)
- 原理:重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
- 时间复杂度:
- 最好情况:当数组已经是有序的,只需要进行一次遍历,比较次数为 ...[查看完整答案]
7. 给定一个单向链表,如何判断其是否有环
出现年份:2025,2024,2023,2022 | 出现概率:1.08% | 公司:小米, B站, 好未来 等
答案
要判断一个单向链表是否有环,可以使用以下两种常见的方法:
方法一:哈希表法
思路
遍历链表,将每个节点的引用存储在一个哈希表中。在遍历过程中,检查当前节点是否已经存在于哈希表中。如果存在,则说明链表有环;如果遍历到链表末尾(即当前节点为 null
),则说明链表无环。
代码实现(Python)
class ListNode:
def __init__(self, val=0, next=None):
self.va...[查看完整答案]
8. 实现二叉树的层序遍历
出现年份:2025,2024,2023,2022 | 出现概率:0.91% | 公司:Momenta, 华为, 携程 等
答案
问题描述
实现二叉树的层序遍历(又称广度优先遍历),即逐层访问树中的所有节点,从左到右。
标准答案
Python实现
from collections import deque
class TreeNode:
def init(self, val=0, left=None, right=None):
self.val = val
self.left = left
self…[查看完整答案]
9. 请阐述快速排序的原理和实现
出现年份:2025,2024,2023,2022 | 出现概率:0.88% | 公司:华为OD, Shopee虾皮, 途游游戏 等
答案
快速排序的原理
快速排序(Quick Sort)是一种高效的排序算法,采用分治法(Divide and Conquer)的策略。其基本思想是通过选择一个基准元素(pivot),将数组分为两部分,使得左边部分的所有元素都小于等于基准元素,右边部分的所有元素都大于等于基准元素,然后分别对左右两部分递归地进行快速排序,最终得到一个有序的数组。
快速排序的具体步骤如下:
- 选择基准元素:从数组中选择一个元素作为基准元素(pivot)。通常可...[查看完整答案]
10. 请简述LRU算法的实现(不用写代码)
出现年份:2025,2024,2023,2022 | 出现概率:0.80% | 公司:字节跳动, 车来了, 元戎启行 等
答案
LRU(Least Recently Used)算法即最近最少使用算法,是一种缓存淘汰策略,当缓存空间满时,会优先淘汰最久未使用的数据。下面从原理、数据结构选择以及实现步骤三个方面简述其实现:
原理
LRU 算法的核心思想是基于局部性原理,认为最近被访问的数据在未来一段时间内被再次访问的概率较大,而最久未被访问的数据在未来一段时间内被访问的概率较小。因此,当缓存空间不足时,优先淘汰最久未使用的数据。
数据结构选择
为了高效实现 LRU ...[查看完整答案]
11. 简述什么是红黑树 ?
出现年份:2025,2024,2023,2022 | 出现概率:0.78% | 公司:字节跳动, 武汉小厂, 宝兰德 等
答案
红黑树是一种自平衡的二叉查找树(Binary Search Tree),通过引入颜色属性和特定的结构性约束,确保树的高度始终保持在 O(log n) 级别,从而使得查找、插入和删除操作的时间复杂度均为 O(log n)。 它满足以下五个性质:
- 节点颜色:每个节点非红即黑。
- 根节点为黑:根节点始终是黑色。
- 无连续红节点:如果一个节点是红色,则它的左右子节点都必须是黑色(即不能有两个连续的红色节点)。
- 黑高一致...[查看完整答案]
12. 说明B+树和B-树的区别
出现年份:2025,2024,2023,2022 | 出现概率:0.66% | 公司:华为OD, 快手, 作业帮 等
答案
B - 树(B-tree)和 B + 树(B + -tree)都是自平衡的多路搜索树,常用于数据库和文件系统中,以提高数据的查找、插入和删除效率。它们之间存在以下区别:
结构方面
节点存储内容
- B - 树:每个节点既存储键(key),也存储对应的数据记录或指向数据记录的指针。也就是说,B - 树的所有节点都可以存储实际的数据信息。
- B + 树:只有叶子节点存储数据记录或指向数据记录的指针,非叶子节点仅存储键,用于索引和导航。这...[查看完整答案]
13. 请实现快速排序算法
出现年份:2025,2024,2023,2022 | 出现概率:0.54% | 公司:快手, 七牛云, 百度 等
答案
快速排序(Quick Sort)是一种高效的排序算法,采用分治法(Divide and Conquer)的策略。它的基本思想是通过选择一个基准元素(pivot),将数组分为两部分,使得左边部分的所有元素都小于等于基准元素,右边部分的所有元素都大于等于基准元素,然后分别对左右两部分递归地进行快速排序。
以下是使用Python实现的快速排序算法:
def quick_sort(arr):
if len(arr) <= 1:...[查看完整答案]
14. 请说明跳表(skiplist)的实现原理
出现年份:2025,2024,2023,2022 | 出现概率:0.48% | 公司:上海某小厂, 杭州智晟未来信息科技, 长亭科技 等
答案
跳表(Skip List)是一种随机化的数据结构,它通过在每个节点中维护多个指向其他节点的指针,从而实现快速的查找、插入和删除操作。跳表的平均时间复杂度为 O ( log n ) O(\log n) ,最坏情况下为 ...[查看完整答案]
15. 请说说布隆过滤器的底层原理
出现年份:2025,2024,2023,2022 | 出现概率:0.38% | 公司:杭州智晟未来信息科技, 小红书, 长亭科技 等
答案
布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否存在于一个集合中。它的底层原理涉及到哈希函数和位数组,下面将详细介绍。
基本概念
布隆过滤器的核心由一个很长的二进制向量(位数组)和一系列哈希函数组成。位数组初始时所有位都被置为 0,当一个元素被加入集合时,通过多个哈希函数将该元素映射到位数组的不同位置,并将这些位置的二进制位设置为 1。当查询一个元素是否存在时,同样使用这些哈希函数计算出对应...[查看完整答案]
由于篇幅所限,这里仅列出前15题,若要查看更多题目,请访问:《数据结构和算法面试题库》