
Machine Learning
Oh_MyBug
微信公众号【OhMyBug】
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[Machine Learning] 逻辑回归(Logistics Regression)
Logistics Regression引言Logistics回归,虽然这个算法从名字上来看是回归算法,但实际上是一个分类算法。Logistics回归是在线性回归的基础上,使用sigmoid函数,将线性模型ωx+b\omega x+bωx+b的结果压缩到[0,1][0,1][0,1]之间,使其有概率意义。Logistics回归本质仍然是一个线性模型,虽然在线性模型ωx+b\omega x+...原创 2020-02-17 20:14:58 · 333 阅读 · 0 评论 -
[Machine Learning] 交叉熵损失函数 v.s. 平方损失函数(CrossEntropy Loss v.s. Square Loss)
思考我们会发现,在机器学习实战中,做分类问题的时候经常会使用一种损失函数(Loss Function)——交叉熵损失函数(CrossEntropy Loss)。但是,为什么在做分类问题时要用交叉熵损失函数而不用我们经常使用的平方损失函数呢?这时候就应该想一下,损失函数需要做什么?怎样的损失函数才是最合适的?一般而言,我们都希望损失函数能够做到,当我们预测的值跟目标值越远时,在更新参数的时候,...原创 2020-02-17 14:42:45 · 495 阅读 · 0 评论 -
[Machine Learning] 极大似然估计(Maximum Likelihood Estimate)
极大似然估计直观想法(举个例子) 经典例题:有两个外形完全相同地箱子,甲箱中有99只白球,1只黑球;乙箱中有99只黑球,1只白球。一次试验取出一球,结果取出的是黑球。问:黑球从哪个箱子中取出?人们的第一印象就是:“此黑球最像是从乙箱中取出地”,这个推断符合人们的经验事实。“最像”就是“最大似然”之意,这种想法常称为“最大似然原理”(maximum-likelihood)。定义...原创 2020-02-16 17:12:52 · 782 阅读 · 0 评论 -
[Machine Learning] 生成模型 & 判别模型(Generative & Discriminative Model)
生成模型概率生成模型,简称生成模型(Generative Model),是概率统计和机器学习中的一类重要模型,指一系列用于随即生成可观测数据的模型。典型模型高斯混合模型(Gaussian Mixed Model)隐马尔科夫模型(Hidden Markov Model)朴素贝叶斯分类器(Naive Bayes Classifier)判别模型在机器学习领域,判别模型是一种对未知数据y...原创 2020-02-16 15:50:53 · 641 阅读 · 0 评论 -
[Machine Learning] 朴素贝叶斯(Naive Bayes)
Naive Bayes (朴素贝叶斯)在机器学习中,朴素贝叶斯分类器是一系列以假设特征之间强(朴素)独立下运用贝叶斯定理为基础的简单概率分类器贝叶斯公式&全概率公式&先验概率&后验概率如果对这四个名词不太熟悉,可以参考《[Machine Learning] 贝叶斯公式 & 全概率公式(Bayes Rule & Total Probability T...原创 2020-02-15 21:09:01 · 710 阅读 · 0 评论 -
[Machine Learning] 贝叶斯公式 & 全概率公式(Bayes Rule & Total Probability Theorem)
举个例子 如图,这是一个简单两步式的模型。现在我们需要完成事件BBB,那么可以有n种不同的路A1,A2,A3,...,AnA_1,A_2,A_3,...,A_nA1,A2,A3,...,An选择:如果我们选择A1A_1A1这条路,那么:第一步:选择A1A_1A1的概率就是P(A1)P(A_1)P(A1)第二步:就是在A1A_1A1发生的条件下事件B发生的概率...原创 2020-02-15 14:04:06 · 934 阅读 · 0 评论 -
[Machine Learning] 分类(Classification)
KeywordsClassification(分类)Generative Model(生成模型)Gaussian Distribution(高斯分布)Maximum Likelihood(极大似然估计)Classification(分类) Input:目标 xOutput:这个目标x属于n个Class中的哪个ClassClassification的应用Cr...原创 2020-02-14 17:29:18 · 925 阅读 · 0 评论 -
[Machine Learning] 交叉验证(Cross Validation)
交叉验证(Cross Validation)什么是交叉验证(Cross Validation)交叉验证是一种模型验证技术,可用于评估统计分析(模型)结果在其他独立数据集上的泛化能力。它主要用于预测,我们可以用它来评估预测模型在实践中的准确度。什么是泛化(Generalization)能力呢?在《[Machine Learning] 回归(Regression)》中有提到,这里简单说明一下...原创 2020-02-13 22:27:38 · 798 阅读 · 0 评论 -
[Machine Learning] 方向导数&梯度(Directional Derivative & Gradient)
方向导数首先,我们先来讨论一下函数y=f(x1,x2)y = f(x_1,x_2)y=f(x1,x2)在一点P沿某一方向的变化率问题。假设函数y=f(x1,x2)y = f(x_1,x_2)y=f(x1,x2)在点P(x1,x2)P(x_1,x_2)P(x1,x2)的某一邻域U(P)U(P)U(P)内有定义,自点P引射线lll。设xxx轴正向到射线lll的转角为φ\varph...原创 2020-02-13 17:09:03 · 2225 阅读 · 1 评论 -
[Machine Learning] 欠拟合&过拟合(Underfitting & Overfitting)
Where does the error from?在[Machine Learning] 回归(Regression)中,我们发现,越复杂的Model不见得会给Testing Data(测试数据)越好的Performance(效果)。相反,最复杂的Model其实Performance(效果)是最差的,即Error是最大的!现在我们就来讨论一下这个Error来自什么地方?了解Error的...原创 2020-02-12 17:56:44 · 755 阅读 · 0 评论 -
[Machine Learning] 回归(Regression)
回归(Regression)Regression可以做什么如果说机器学习(Meachine Learning)要做的事情是要找一个Function,那么Regression要做的事情就是我们要找的那个Function是一个数值(Scalar)。如果我们要找的Function是一个数值,那么这种任务就叫做Regression。那么Regression应用有哪些呢?股票市场的预测例如:...原创 2020-02-12 09:29:19 · 2136 阅读 · 0 评论