基于最近邻的信息集译码与单原语Feistel密码分析
在密码学领域,信息集译码和Feistel密码结构是两个重要的研究方向。本文将深入探讨基于最近邻的信息集译码算法的改进策略,以及单原语Feistel密码的安全性分析。
基于最近邻的信息集译码算法改进
Both - May算法在每一层的工作分为两个步骤:首先,将上一层的两个列表组合,得到在部分坐标子集上满足权重限制的向量;然后,对这些向量进行过滤,以满足剩余坐标的权重限制。为了改进这一过程,我们提出将过滤过程嵌入到最近邻搜索算法中,直接获得满足所有或更多坐标权重限制的向量。
May - Ozerov最近邻搜索算法
May - Ozerov最近邻搜索算法用于在两个包含均匀随机向量的相同大小输入列表$L_1$和$L_2$中找到所有$\epsilon$ - 近对。其具体步骤如下:
1. 计算列表对 :从初始列表中计算指数数量的列表对$L_1’$和$L_2’$。对于最优参数选择,保证$L_1’$和$L_2’$各自仅具有多项式大小,同时$L_1$和$L_2$之间的任何距离为$\epsilon$的对仍然包含在至少一个构造的对$L_1’$和$L_2’$中。
2. 构建树结构 :列表对以树状方式计算,输入对$L_1$和$L_2$形成树的根。树是逐层迭代构建的,在算法的每一步,树的每个叶子节点分支$1/q_{\epsilon}$次。子节点通过遍历父节点的两个列表(单独进行,不考虑列表之间的对)并对每个元素应用局部敏感过滤器来计算。
3. 过滤元素 :该过滤器会丢弃不满足过滤标准的元素