领域LLM九讲——第2讲 LLama-factory 微调大模型

1.1 技术背景

上一讲通过Esay Dataset构建了一组“哲学书籍”的问答语料数据,下面介绍如何进行系统性微调。在有限资源的条件下,优先级最高的为全量,其次是选择更大参数量的模型,构建更庞大更优质的数据集。

1.2 全量微调

在经过多轮lora微调尝试后,模型幻觉与重复文本的问题无法有效改善。在未来多agent场景中,是由强大的LLM作为agent决策层,而‘神经末梢‘以小模型的快速反馈为优先。

1.2.1 Llama-factory

源码Code

1) 启动llama-factory:
按要求安装环境后,启动gradio webui界面(记得 git pull 最新代码):

llamafactory-cli webui

按如下界面进行配置(相关解释在原图中标注):

  1. 数据源及超参设置:
    2.点击开始训练,这里30 step在3070上训练了大概3h:

2)验证训练结果

在同一界面上选择chat,导入刚才train的模型:

在这里插入图片描述
这里虽然能够快速回答问题,但如果提问来自dataset外的内容,模型很自然地幻觉。因此RAG在当前场景下是无可替代的,一方面他能够给LLM提供额外的数据储备;另一方面,也避免了周期性的重训练。

1.3 结论

在有限资源中,小模型微调能解决的应用场景局限于:1. 丰富、优质、庞大的训练数据集;2. 非多轮问答场景的简易决策agent(如评分、质检、分类等场景)。

当然,把小模型训练为一个独立思考的人格也是不错的选择,比如构建一个爱因斯坦等人物的私有数据集合。进一步的,作为虚拟数字人等场景应用也是不错的选择。

1.4 下一步工作

上面我们介绍了模型微调的效果,以及讨论了小模型微调的应用场景局限性,强调了rag的不可替代性。下面,我们将展开对RAG"外挂"的应用的思考与系统构建。

附录

本人github项目地址:https://github.com/oncecoo
欢迎关注!

### 使用 LLaMA-Factory 进行模型微调的算力需求分析 #### GPU 和 TPU 的资源需求概述 在使用 LLaMA-Factory 对各种规模的模型进行微调时,硬件资源配置直接影响到训练效率和成本。通常情况下,GPU 是首选设备,因为其强大的并行计算能力和 PyTorch 生态系统的良好支持[^1]。TPU 虽然也可以用于大规模机器学习任务,但在 LLaMA-Factory 中的支持相对有限。 对于不同的模型大小(从小型到超大型),所需的 GPU 或 TPU 配置会显著变化: #### 不同模型尺寸下的算力需求 1. **小型模型 (参数量 ≤ 7B)** - 推荐 GPU 类型:单张 NVIDIA A100 或 V100。 - 显存要求:至少 24GB。 - 训练时间:假设数据集适中,大约需要数小时至一天完成微调[^2]。 2. **中型模型 (参数量 ≈ 13B ~ 30B)** - 推荐 GPU 类型:多张 NVIDIA A100(建议 >= 4 张)。 - 显存要求:每张显卡需 ≥ 40GB。 - 数据并行策略:推荐使用 DeepSpeed 或 DDP(Distributed Data Parallel)来优化内存利用率和通信开销。 - 训练时间:可能需要几天的时间,具体取决于数据集大小和批次设置。 3. **大型模型 (参数量 > 30B)** - 推荐 GPU 类型:8 张及以上 NVIDIA A100 或 H100。 - 显存要求:≥ 80GB/卡。 - 并行模式:除了数据并行外,还需引入 ZeRO-Offload 或混合精度技术以降低显存压力。 - 训练时间:几周甚至更长时间,尤其是当目标是达到较高收敛水平时。 关于 TPU 支持方面,尽管 Google 提供了 Cloud TPU v3/v4 系列作为替代方案,但由于缺乏对主流框架如 PyTorch 的原生支持以及生态工具链不够成熟,在实际应用中往往不如 GPU 方便高效。 #### Docker 容器化环境的优势 通过基于 Docker 构建 LLaMA-Factory 的工作流,可以简化跨平台部署流程,并确保依赖项一致性。这使得研究人员能够在本地工作站或者云端实例之间无缝切换而无需担心版本冲突等问题。 ```bash # 示例命令:启动带有 CUDA 支持的容器 docker run --gpus all -it llm_factory_image bash ``` 上述脚本展示了如何运行一个启用了全部可用 GPU 设备的交互式 shell session 来执行后续操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值