数据聚类算法:从马氏距离到模糊聚类的深入解析
在数据处理和分析领域,聚类算法是一项关键技术,它能够将数据点分组为不同的簇,以便更好地理解数据的结构和特征。本文将详细介绍几种重要的聚类算法,包括马氏数据聚类中的期望最大化算法,以及模糊聚类问题。
1. 马氏数据聚类相关算法
1.1 增量马氏算法
在马氏数据聚类中,增量马氏算法对于每个 k 值所得到的分区和函数值,与示例中的马氏 k - 均值算法所得到的结果不同。这引发了一个问题:这些马氏 k 分区中是否有同时也是马氏最适分区(Mahalanobis MAPart)的情况。
1.2 高斯混合模型的期望最大化算法
1.2.1 算法概述
高斯混合模型的期望最大化(EM)算法是一种用于估计参数的迭代方法。设 A 是 Rⁿ 中的绝对连续随机向量,其分布依赖于参数向量 θ ∈ P,对应密度函数为 fA(a; θ)。基于数据集 A = {ai : i = 1, …, m},我们使用最大似然原理来估计参数向量 θ。定义似然函数 L(θ) = ∏ᵢ₌₁ᵐ fA(ai; θ),最大似然估计(MLE)是使 L(θ) 最大的参数向量 ˆθ,即 ˆθ = argmax₍θ∈P₎ L(θ)。
由于对数函数是严格递增的,为了求解上述问题,我们考虑对数似然函数 ℓ(θ) = ln L(θ) = ∑ᵢ₌₁ᵐ ln fA(ai; θ),则 MLE 可通过求解 ˆθ = argmax₍θ∈P₎ ℓ(θ) 得到。
1.2.2 多元正态分布示例
设 A ∼ N(c, Σ) 是 Rⁿ 中的多元正态随机向量,期望为 c ∈ Rⁿ,协方差矩阵为