自然语言处理迁移学习的新兴趋势与未来展望
在自然语言处理(NLP)的快速发展领域中,新的研究趋势和模型不断涌现。本文将为你介绍一些在NLP迁移学习中具有影响力的新兴研究趋势,并探讨该领域的未来发展方向。
新兴研究模型介绍
- RoBERTa :RoBERTa通过一些优化技巧来提高BERT的效率。研究发现,通过仔细设计训练超参数和设置,可以显著提升原始BERT的性能。例如,移除下一句预测(NSP)任务,同时保留掩码语言建模(MLM)任务,能够提高下游任务的表现。此外,在训练过程中使用较大的学习率和小批量数据也是有效的设计选择。RoBERTa在Hugging Face的transformers库中实现。
- GPT - 3 :GPT - 3是目前最大的预训练语言模型之一,拥有1750亿个参数。与之前的模型相比,其参数数量有了巨大的增长,例如比微软的Turing NLG(170亿参数)多了10倍以上。GPT - 3能够以极少的示例执行广泛的任务,如语言翻译、垃圾邮件检测,甚至根据描述编写代码等。然而,目前OpenAI仅通过付费API向少数早期采用者开放该模型,目的是监控使用情况,限制潜在的有害应用。同时,EleutherAI的GPT - Neo是一个较小但强大的开源替代方案,不同大小的模型可在其仓库中获取,并可使用Hugging Face托管的推理API进行测试。需要注意的是,GPT - 3的作者也认识到,扩大语言模型规模的收益已接近极限,未来需要在建模方法上进行创新。
- XLNet :XLNet基于Transformer - XL构建,旨在